Production and Use of Selenium Nanoparticles as Fertilizers
キーワード
概要
The synergy problem was discussed linking Se nanoparticles and different soil fertility agents. Se zero-valent-state nanoparticles were investigated as fertilizers and antioxidants. A technology was proposed for producing Se zero-valent-state nanoparticles. Se nanoparticles were obtained by laser ablation of Se in water using a fiber ytterbium laser, with a wavelength between 1060 and 1070 nm, a pulse repetition rate of 20 kHz, a pulse duration of 80 ns, and an average power of 20 W, and a copper vapor laser with wavelengths of 510.6 and 578.2 nm and an average power of 8 W. The main particle mass part shifted from 800 nm to a size less than 100 nm, corresponding to the increase in the laser fragmentation time. The resulting nanoparticles were monodisperse in size and mass. The Se nanoparticle water suspension was introduced into the soil. The soil Se nanoparticle concentrations were about 1, 5, 10, and 25 μg kg-1. An experiment was carried out in a climate chamber in two series: (1) growing plants in soil imitating the standard organogenesis environment conditions such as illumination of 16 h per day, temperature of 22 °C, soil humidity of 25% SDW, and an experiment duration of 30 days and (2) growing plants in soil under changing environmental conditions of organogenesis. The standard environmental conditions for the first 10 days are illumination of 16 h day-1, temperature of 22 °C, and soil humidity of 25% SDW. The plant stress for 5 days is hyperthermia of 40 °C. The standard environmental conditions for the next 15 days are illumination of 16 h day-1, temperature of 22 °C, and soil humidity of 25% SDW. At standard organogenesis, the plant leaf plate surface area was 30 ± 2 cm2 in the control option, and the Se nanoparticle doses were correspondingly 1 μg kg-1 for 32 ± 3 cm2, 5 μg kg-1 for 37 ± 2 cm2, 10 μg kg-1 for 38 ± 3 cm2, and 25 μg kg-1 for 28 ± 4 cm2. Hyperthermia stressed plant growth was studied. The highest plant growth rate was in Se nanoparticle concentrations of 5 and 10 μg kg-1. The eggplant growth on the soil with the Se nanoparticle addition at a concentration of 10 μg kg-1 of leaf plate surface area was twice compared to the eggplant growth in untreated soil. The same was for tomato plants. The leaf plate surface area of the cucumber plant grown using Se nanoparticles was 50% higher compared to the control option. The Biogeosystem technique methodology of 20-45 cm soil-layer intrasoil milling for soil multilevel aggregate system formation and intrasoil pulse continuous-discrete watering for soil water regime control was proposed for the Se nanoparticles for better function in the real soil, providing a synergy effect of soil mechanical processing, nanoparticles, humic substances, and polymicrobial biofilms on soil fertility.