Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

6 deoxocastasterone/arabidopsis

リンクがクリップボードに保存されます
記事臨床試験特許
12 結果

Identification of castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol from the shoots of Arabidopsis thaliana.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Endogenous brassinosteroids in the shoots of Arabidopsis thaliana were investigated. Castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol were identified by GC-MS. The co-occurrence of 6-deoxo-brassinosteroids and 6-oxo-brassinosteroids suggests that there are both early and late
To gain a better understanding of brassinosteroid biosynthesis, the levels of brassinosteroids and sterols related to brassinolide biosynthesis in Arabidopsis, pea, and tomato plants were quantified by gas chromatography-selected ion monitoring. In these plants, the late C-6 oxidation pathway was
Brassinosteroids (BRs) are naturally occurring steroidal hormones that play diverse roles in various processes during plant growth and development. Thus, genetic manipulation of endogenous BR levels might offer a way of improving the agronomic traits of crops, including plant architecture and stress

Brassinosteroids in Arabidopsis thaliana.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
From the seeds and siliques of Arabidopsis thaliana, six brassinosteroids, brassinolide, castasterone, typhasterol, 6-deoxocastasterone, 6-deoxotyphasterol and 6-deoxoteasterone, were identified by GC-mass spectrometry or GC-selected ion monitoring. As the occurrence of castasterone, typhasterol,

Characterization of two brassinosteroid C-6 oxidase genes in pea.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
C-6 oxidation genes play a key role in the regulation of biologically active brassinosteroid (BR) levels in the plant. They control BR activation, which involves the C-6 oxidation of 6-deoxocastasterone (6-DeoxoCS) to castasterone (CS) and in some cases the further conversion of CS to brassinolide

BAT1, a putative acyltransferase, modulates brassinosteroid levels in Arabidopsis.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Brassinosteroids (BRs) are essential for various aspects of plant development. Cellular BR homeostasis is critical for proper growth and development of plants; however, its regulatory mechanism remains largely unknown. BAT1 (BR-related acyltransferase 1), a gene encoding a putative acyltransferase,

Arabidopsis PIZZA has the capacity to acylate brassinosteroids.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for

Biosynthetic pathways of brassinolide in Arabidopsis.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Our previous studies on the endogenous brassinosteroids (BRs) in Arabidopsis have provided suggestive evidence for the operation of the early C6-oxidation and the late C6-oxidation pathways, leading to brassinolide (BL) in Arabidopsis. However, to date the in vivo operation of these pathways has not

shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Brassinosteroids (BRs) are plant steroidal hormones that regulate plant growth and development. An Arabidopsis dwarf mutant, shrink1-D (shk1-D), was isolated and the phenotype was shown to be caused by activation of the CYP72C1 gene. CYP72C1 is a member of the cytochrome P450 monooxygenase gene

Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Brassinosteroids (BRs) are steroidal plant hormones that are essential for growth and development. It has been proposed that BRs are synthesized via two parallel pathways, the early and late C-6 oxidation pathways according to the C-6 oxidation status. The tomato (Lycopersicon esculentum) Dwarf gene

The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Brassinosteroids are steroidal hormones essential for the growth and development of plants. Brassinolide, the most biologically active brassinosteroid, has a seven-membered lactone ring that is formed by a Baeyer-Villiger oxidation of its immediate precursor castasterone. Despite its potential key

Homeostasis of brassinosteroids regulated by DRL1, a putative acyltransferase in Arabidopsis.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Brassinosteroids (BRs) play essential roles in regulating various aspects of plant growth and development and in responding to diverse environmental cues, and their metabolism is an important way to regulate their homeostasis in plants. Here, we identified a dominant mutant, dwarf and round leaf-1
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge