13 結果
Herbicide-resistant populations of Alopecurus myosuroides Huds (black-grass) have become widespread throughout the UK since the early 1980s. Clear evidence suggests that more than one resistance mechanism exists, and glutathione S-transferases (GSTs) have been implicated in resistance due to
Black-grass (Alopecurus myosuroides Huds) is a major grass weed in winter cereals in Europe. It reduces yields and can act as a secondary host for a range of diseases. Herbicide resistance in this species was first detected in the UK in the early 1980s, and has now been reported in thirty counties.
Multiple-herbicide resistant (MHR) weeds are a global problem and a looming threat to weed control in crops. MHR weeds express a specific phi class glutathione transferase (MHR-GSTF) which seems to contribute to herbicide resistance. The present work aims to investigate the structure and catalytic
Black-grass (Alopecurus myosuroides) is a major weed of wheat in Europe, with several populations having acquired resistance to multiple herbicides of differing modes of action. As compared with herbicide-susceptible black-grass, populations showing herbicide cross-resistance contained greatly
Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated
Non-target-site based resistance (NTSR), a poorly understood multigenic trait, has evolved as the greatest threat to crop production worldwide, by endowing weed plants an unpredictable pattern of resistance to herbicides. Our recent work with multiple-herbicide-resistant shortawn foxtail (Alopecurus
Safeners enhance the selectivity of graminicidal herbicides such as fenoxaprop ethyl in cereals, by increasing their rates of detoxification in the crop. While studying the selectivity of fenoxaprop ethyl in wheat, we determined that the safeners mefenpyr diethyl and fenchlorazole ethyl also
Herbicide safeners manipulate herbicide selectivity by enhancing the activities of detoxifying enzymes, such as glutathione transferases (GSTs) and cytochrome P450 mono-oxygenases (CYPs) in cereal crops. As part of a study examining the importance of O-glucosyltransferases (OGTs) in pesticide
Black-grass (Alopecurus myosuroides Huds.) is a frequent grass weed that commonly occurs in winter wheat in temperate Europe. Evolving resistance to post-emergence herbicides, e.g. acetyl CoA carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors requires more complex weed Non-target-site resistance (NTSR) to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol.)
Anisantha and Bromus spp. are widespread and difficult to control, potentially due to the evolution of herbicide resistance. In this study, UK populations of four brome species have been tested for the early development of resistance to acetolactate synthase inhibiting herbicides BACKGROUND
Non-target-site based resistance to herbicides is a major threat to the chemical control of agronomically noxious weeds. This adaptive trait is endowed by differences in the expression of a number of genes in plants that are resistant or sensitive to herbicides. Quantification of the
Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United