Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

epidermolysis bullosa dystrophica/protease

リンクがクリップボードに保存されます
記事臨床試験特許
ページ 1 から 16 結果

Increased neutral protease and collagenase activity in recessive dystrophic epidermolysis bullosa.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The enzyme activities of normal-looking skin and blister fluid from a patient with recessive dystrophic epidermolysis bullosa (RDEB) were measured. Of the hydrolytic enzymes measured, both collagenase and neutral protease activities were considerably increased in the skin and blister fluid samples

Proteases are responsible for blister formation in recessive dystrophic epidermolysis bullosa and epidermolysis bullosa simplex.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The specific factors which induce blister formation in recessive dystrophic epidermolysis bullosa (RDEB) and epidermolysis bullosa simplex (EBS) were studied by culturing normal human skin with blister fluid from patients with RDEB and EBS. When skin from a healthy person was cultured with RDEB

Protease inhibitor therapy for recessive dystrophic epidermolysis bullosa. In vitro effect and clinical trial with camostat mesylate.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Recently we reported that a kind of serine protease, SH protease, and collagenase might be involved in blister formation and, furthermore, that the cooperative action of these three proteases was essential for blister formation in recessive dystrophic epidermolysis bullosa. In this study we examined
Type VII collagen is a major component of anchoring fibrils, attachment structures that mediate dermal-epidermal adherence in human skin. Dystrophic epidermolysis bullosa (DEB) is an inherited mechano-bullous disorder caused by mutations in the type VII collagen gene and perturbations in anchoring
Dystrophic epidermolysis bullosa (DEB) is an inherited mechano-bullous disorder of skin caused by mutations in the type VII collagen gene. The lack of therapy for DEB provides an impetus to develop gene therapy strategies. However, the full-length 9-kilobase type VII collagen cDNA exceeds the

Origin and properties of the blister formation factor in blister fluids from recessive dystrophic epidermolysis bullosa.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The origin and properties of the blister formation factor in recessive dystrophic epidermolysis bullosa (RDEB) blister fluids were investigated. Organ cultures of normal human skin incubated with RDEB dermis extract or with RDEB fibroblast culture medium (FCM) produced a clear subepidermal blister

Characterization of molecular mechanisms underlying mutations in dystrophic epidermolysis bullosa using site-directed mutagenesis.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Type VII collagen (C7) is a major component of anchoring fibrils, structures that mediate epidermal-dermal adherence. Mutations in gene COL7A1 encoding for C7 cause dystrophic epidermolysis bullosa (DEB), a genetic mechano-bullous disease. The biological consequences of specific COL7A1 mutations and
Type VII collagen is the major constituent of anchoring fibrils. It has a central collagenous domain that is surrounded by a small C-terminal non-collagenous domain (NC2) and a large N-terminal non-collagenous (NC1) domain. Mutations in type VII collagen can lead to hereditary skin blistering
Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited disorder characterized by skin fragility, blistering, and multiple skin wounds with no currently approved or consistently effective treatment. It is due to mutations in the gene encoding type VII collagen (C7). Using recombinant human

Cleavage of type VII collagen by interstitial collagenase and type IV collagenase (gelatinase) derived from human skin.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Type VII collagen is the major structural protein of anchoring fibrils, which are believed to be critical for epidermal-dermal adhesion in the basement membrane zone of the skin. To elucidate possible mechanisms for the turnover of this protein, we examined the capacities of two proteases, human
The COL7A1 gene, which encodes type VII collagen, has been implicated as a candidate gene for dominantly and recessively inherited forms of dystrophic epidermolysis bullosa. In this study, hamster and human cDNA clones, which encode the previously uncharacterized carboxyl-terminal portion of type

Retinoic acid inhibition of collagenase and gelatinase expression in human skin fibroblast cultures. Evidence for a dual mechanism.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Human skin fibroblast cultures have been employed to study the effects of a variety of vitamin A analogues (retinoids) on the expression of two enzymes involved in collagen degradation in the skin, collagenase and a gelatinolytic protease. In normal and recessive dystrophic epidermolysis bullosa

Interaction of Complement Defence Collagens C1q and Mannose-Binding Lectin with BMP-1/Tolloid-like Proteinases.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
The defence collagens C1q and mannose-binding lectin (MBL) are immune recognition proteins that associate with the serine proteinases C1r/C1s and MBL-associated serine proteases (MASPs) to trigger activation of complement, a major innate immune system. Bone morphogenetic protein-1

Proteinases of the bone morphogenetic protein-1 family convert procollagen VII to mature anchoring fibril collagen.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Collagen VII is the major structural component of the anchoring fibrils at the dermal-epidermal junction in the skin. It is secreted by keratinocytes as a precursor, procollagen VII, and processed into mature collagen during polymerization of the anchoring fibrils. We show that bone morphogenetic
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge