ページ 1 から 17 結果
In order to improve drought tolerance of tall fescue (Festuca arundinacea Schreb.), an important perennial cool-season grass, we introduced Arabidopsis DREB1A/CBF3 driven by the inducible rd29A promoter into tall fescue mediated by Agrobacterium tumefaciens strains AGL1. PCR and Southern blot
Dehydration-responsive element binding/C-repeat-binding factors (DREB/CBF) control the activity of multiple stress response genes and therefore represent attractive targets for genetic improvement of abiotic stress tolerance. Paper mulberry (Broussonetia papyrifera L. Vent) is well known for its
The aim of this study is to find Iranian tall fescue accessions that tolerate drought stress and investigation on phylogenetical, morphological, and physiological characterization of them. For this propose, inter-simple sequence repeats (ISSR) markers were used to examine the genetic variability of
The interaction effects between temperature and soil moisture on Festuca sinensis Keng ex E.B.Alexeev were analysed to determine how F. sinensis responds to these environmental conditions. A pot experiment was conducted in a greenhouse under simulated growth conditions with four soil moisture
Drought resistance is a crucial attribute of plants and to properly decipher its mechanisms, a valuable plant model is required. Lolium multiflorum is a forage grass characterized by a low level of abiotic stress resistance, whereas Festuca arundinacea is recognized as a species with drought
Phytoremediation is an important measure to remove organic pollutants from contaminated soil, and the root secretion of plant is considered to be closely related to the mechanisms of phytoremediation of organic pollutants. It is in favor of revealing the mechanisms of remediation by studying the
A pot experiment was conducted to study the effects of different irrigation minima [80% field capacity (FC), 70% FC, 60% FC and 50% FC] from late autumn to early winter on the green period and cold-resistance of Festuca arundinacea. Under the low temperature in winter, treatments 80% FC and 70% FC
BACKGROUND
Increased biotic and abiotic plant stresses due to climate change together with an expected global human population of over 9 billion by 2050 intensifies the demand for agricultural production on marginal lands. Soil salinity is one of the major abiotic stresses responsible for reduced
Dehydration-responsive element binding (DREB) proteins are a subfamily of AP2/ERF transcription factors that have been shown to improve tolerance to osmotic stresses in plants. To improve the osmotic stress tolerance of paper mulberry (Broussonetia papyrifera L. Vent), an economically important
Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to
When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as "stress memory". However, there is insufficient information about plants' stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI
Crop productivity is greatly affected by soil salinity; therefore, improvement in salinity tolerance of crops is a major goal in salt-tolerant breeding. The Salt Overly Sensitive (SOS) signal-transduction pathway plays a key role in ion homeostasis and salt tolerance in plants. Here, we report that
Seed and transplanted adult plants from populations of Festuca rubra, collected from inland, salt-marsh and sand-dune sites were grown on culture solution with added sodium chloride. The growth of the populations of the three habitats was reduced differentially by salt. The salt marsh ecotype
Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and
Slow callus growth is a barrier to efficient genetic transformation in some gramineous species. A reformulation of Murashige and Skoog (MS) medium, with additional magnesium sulphate, potassium phosphate, copper sulphate, proline and glutamine, termed WPBS medium, has been developed which improves