ページ 1 から 28 結果
Indole-3-carbinol (I3C), a naturally occurring hydrolysis product of glucobrassicin from cruciferous vegetables such as broccoli, cabbage and Brussels sprouts, is an anticancer phytochemical that triggers complementary sets of antiproliferative pathways to induce a cell cycle arrest of
3,3'-Diindolylmethane (DIM) is a naturally derived chemopreventive compound. It comes from glucobrassicin, an indole glucosinolate enriched in cruciferous vegetables, and is formed in the acidic environment of the stomach after ingestion. Mouse double minute 2 homolog (MDM2) is an important,
BACKGROUND
Brassica vegetable consumption may confer a protective effect against cancer, possibly attributable to their glucosinolates. Glucobrassicin is a predominant glucosinolate and is the precursor of indole-3-carbinol (I3C), a compound with anticancer effects. However, objective assessments of
Even with colonoscopy screening and preventive measures becoming more commonplace, colorectal cancer (CRC) remains the third leading cause of oncologic death in the United States as of 2014. Many chemotherapeutics exist for the treatment of colorectal cancer, though they often come with significant
Glucosinolates hydrolysis products are attracting increasing attention since many studies have suggested that they may be involved in the anticarcinogenic property of cruciferous vegetables. In this study, we show that diindolylmethane (DIM) and sulforaphane, produced during the hydrolysis of
Previous work has shown that food contains a large number of minor dietary constituents that can inhibit the occurrence of cancer. Additional inhibitors from four different natural sources will be the subject of this presentation. 1. Citrus fruit oils. Orange, tangerine, lemon, and grapefruit oils
Nrf2 is a basic leucine zipper transcriptional activator essential for the coordinated transcriptional induction of phase-2 and antioxidant enzymes. Brassica vegetables contain phytochemicals including glucoraphanin, the precursor of sulforaphane (SFN) and glucobrassicin, the precursor of
Vegetable consumption, including cruciferous vegetables, is protective against lung cancer, but the mechanisms are poorly understood. The purpose of this study was to investigate the effects of cruciferous vegetable consumption on the metabolism of the tobacco-specific lung carcinogen
A continuing study of chemopreventive agents has focused on several categories of naturally occurring compounds that inhibit carcinogen activation and are effective in preventing carcinogen-induced neoplasia when administered at short time-intervals before carcinogen challenge. The inhibitory
Indole-3-carbinol (I3C) and phenethyl isothiocyanate (PEITC) are breakdown products of the glucosinolates glucobrassicin and gluconasturtiin, respectively, and are thought to reduce carcinogen activation by P450 enzymes. To assess the effects of these compounds on colon cancer risk, rats were
Broccoli is rich in bioactive components, such as sulforaphane and indole-3-carbinol, which may impact cancer risk. The glucosinolate profile of broccoli can be manipulated through treatment with the plant stress hormone methyl jasmonate (MeJA). Our objective was to produce broccoli with enhanced
Elastase is the only currently identified target protein for indole-3-carbinol (I3C), a naturally occurring hydrolysis product of glucobrassicin in cruciferous vegetables such as broccoli, cabbage, and Brussels sprouts that induces a cell cycle arrest and apoptosis of human breast cancer cells. In
Sulfur-containing phytochemicals of two different kinds are present in all Brassica oleracea (Cruciferae) vegetables (cabbage, broccoli, etc.). They are glucosinolates (previously called thioglucosides) and S-methyl cysteine sulfoxide. These compounds, which are derived in plant tissue by amino acid
Watercress (Nasturtium officinale) is a member of the Brassicaceae family and a rich source of glucosinolate, which has been shown to possess anticancer properties. To extract these compounds from N. officinale for study, a method was developed in which Agrobacterium rhizogenes was used to transfer
Consumption of cruciferous vegetables has been associated with a low risk of developing cancer. Indole-type phytonutrients, derived from enzymatic hydrolysis of glucobrassicin, exhibit cancer-preventive properties and occur in all vegetables of the Brassicaceae family. A LC-Q-TOF-MS methodology was