ページ 1 から 21 結果
The magnitude of inbreeding depression can influence many aspects of a population's ecology and evolution, including the nature of selection acting on the mating system and the chances that the population will go extinct during periods of small population size. If inbreeding depression is caused
Both chromosomal rearrangements and negative interactions among loci (Dobzhansky-Muller incompatibilities) have been advanced as the genetic mechanism underlying the sterility of interspecific hybrids. These alternatives invoke very different evolutionary histories during speciation and also predict
Cytoplasmic male sterility (CMS) and nuclear fertility restoration (Rf) involves intergenomic coevolution. Although male-sterile phenotypes are rarely expressed in natural populations of angiosperms, CMS genes are thought to be common. The evolutionary dynamics of CMS/Rf systems are poorly
The mechanisms underlying genetic associations have important consequences for evolutionary outcomes, but distinguishing linkage from pleiotropy is often difficult. Here, we use a fine mapping approach to determine the genetic basis of association between cytonuclear male sterility and other floral
Hybrid incompatibilities are a common correlate of genomic divergence and a potentially important contributor to reproductive isolation. However, we do not yet have a detailed understanding of how hybrid incompatibility loci function and evolve within their native species, or why they are
Much evidence has shown that postzygotic reproductive isolation (hybrid inviability or sterility) evolves by the accumulation of interlocus incompatibilities between diverging populations. Although in theory only a single pair of incompatible loci is needed to isolate species, empirical work in
Divergence in gene expression regulation is common between closely related species and may give rise to incompatibilities in their hybrid progeny. In this study, we investigated the relationship between regulatory evolution within species and reproductive isolation between species. We focused on a
Chromosomal rearrangements can contribute to the evolution of postzygotic reproductive isolation directly, by disrupting meiosis in F1 hybrids, or indirectly, by suppressing recombination among genic incompatibilities. Because direct effects of rearrangements on fertility imply fitness costs during
Multilocus interactions (also known as Dobzhansky-Muller incompatibilities) are thought to be the major source of hybrid inviability and sterility. Because cytoplasmic and nuclear genomes have conflicting evolutionary interests and are often highly coevolved, cytonuclear incompatibilities may be
Most species are superbly and intricately adapted to the environments in which they live. Adaptive evolution by natural selection is the primary force shaping biological diversity. Differences between closely related species in ecologically selected characters such as habitat preference,
Characterizing the genetic and molecular basis of hybrid incompatibilities is a first step toward understanding their evolutionary origins. We fine mapped the nuclear restorer (Rf) of cytoplasm-dependent anther sterility in Mimulus hybrids by identifying and targeting regions of the Mimulus guttatus
As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic
Quantitative trait locus (QTL) mapping is a first step toward understanding the genetic basis of adaptive evolution and may also reveal reproductive incompatibilities unique to hybrids. In plants, the shift from outcrossing to self-pollination is common, providing the opportunity for comparisons of
Intraspecific coevolution between selfish elements and suppressors may promote interspecific hybrid incompatibility, but evidence of this process is rare. Here, we use genomic data to test alternative models for the evolution of cytonuclear hybrid male sterility in Mimulus In hybrids between Iron
Understanding the process by which hybrid incompatibility alleles become established in natural populations remains a major challenge to evolutionary biology. Previously, we discovered a two-locus Dobzhansky-Muller incompatibility that causes severe hybrid male sterility between two inbred lines of