ページ 1 から 19 結果
A reinvestigation of the constituents of the Osage orange (maclura pomifera) yielded, in addition to the previously reported triterpenses (lupeol, butyrospermol, and lupan-3beta,20-diol), the pigments osajin and pomiferin, and a previously unreported constituent. The structure of this new compound
Natural and synthetic small molecules targeting G-quadruplex are currently being studied. These peculiar DNA arrangements arise in guanine-rich sequences located in telomeres, oncogene promoters and in several viruses. Two semi-synthetic derivatives of osajin, a natural isoflavone from Maclura
The aim of this study is to purify carbonic anhydrase I and II isoenzymes from human erythrocyte, isolate two natural products osajin (OSJ) and pomiferin (PMF) from Maclura pomifera fruits, and evaluate the in vitro effect of these natural metabolites on these isoenzymes. These natural products may
The present 15 days study was undertaken to evaluate the cardioprotective potential of the prenylated isoflavones osajin and pomiferin isolated from the infructences of Maclura pomifera, Moraceae, against ischemia-reperfusion induced injury in rat hearts as a model of antioxidant-based composite
While osajin and pomiferin are known for their anticancer, antibacterial and antidiabetic properties, scandenone and auriculasin have been proposed as anti-inflammatory and antinociceptive agents. Curiously, these two couples of molecules are, from a chemical point of view, structural isomers which
Natural (iso)flavonoids have been recently reported to inhibit cyclic nucleotide phosphodiesterases (PDEs) and induce vasorelaxation, albeit the results described in the literature are discordant. The cGMP-selective isoform PDE-5A, in particular, represents the target of sildenafil and its analogues
Recent findings that many human chronic diseases are associated with oxidative stresses have instigated the search for dietary antioxidants. Many phytochemicals, particularly phenolic compounds, have been found to possess strong antioxidant activity and reduce the risks of those diseases.
The major constituents from the fruits of Maclura pomifera are the prenylated isoflavones, osajin (1) and pomiferin (2). Their structures were elucidated using NMR spectroscopic techniques and mass spectrometric analysis. Compound 2 showed potential inhibitory activity in histone deacetylase (HDAC)
Phytochemical analysis of the ethanolic extract of Maclura pomifera fruits yielded four new compounds (I-IV) along with eleven known compounds (V-XV). The crude extract exhibited significant activity towards cannabinoid receptors (CB1: 103.4% displacement; CB2: 68.8% displacement) and possibly
The major constituents of fruits of Maclura pomifera are the prenylated isoflavones, osajin (1) and pomiferin (2). Since significant biological activities of extracts from the wood of M. pomifera were previously reported, the peroxynitrite scavenging activity, inhibition of lipid peroxidation,
We have investigated anticholinesterase potential of the methanol extracts from the leaf, wood, flower, twig, and stem bark of the female and male individuals and rhizodermis and fruit from the female tree of Maclura pomifera (Rafin.) Schneider (Moraceae) along with its major isoflavonoids; osajin
Solar ultraviolet light (sUV) has been shown to promote the development of skin disorders including inflammation, photoaging, and skin carcinogenesis. Osajin is the major bioactive isoflavone present in the fruit of Maclura pomifera, commonly referred to as the Osage orange. In this study, we
The fruit of the Maclura pomifera tree is a sustainable source for the pharmacologically interesting isoflavones, osajin and pomiferin. A reversed-phase HPLC method was developed to identify osage orange samples with high isoflavone content and to determine the optimum conditions for sample
G-quadruplex DNA stabilization mediated by small molecules is an attractive approach to modulate the transcription of guanine-rich sequences and contrast unregulated cell proliferation. Natural alkaloids have been reported to target this macromolecular arrangement, and such mechanism may be among