Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioinformatics 2018-Jul

4mCPred: Machine Learning Methods for DNA N4-methylcytosine sites Prediction.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Wenying He
Cangzhi Jia
Quan Zou

키워드

요약

UNASSIGNED

N4-methylcytosine (4mC), an important epigenetic modification formed by the action of specific methyltransferases, plays an essential role in DNA repair, expression and replication. The accurate identification of 4mC sites aids in-depth research to biological functions and mechanisms. Because, experimental identification of 4mC sites is time-consuming and costly, especially given the rapid accumulation of gene sequences. Supplementation with efficient computational methods is urgently needed.

UNASSIGNED

In this study, we developed a new tool, 4mCPred, for predicting 4mC sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Escherichia coli, Geoalkalibacter subterraneus and Geobacter pickeringii. 4mCPred consists of two independent models, 4mCPred_I and 4mCPred_II, for each species. The predictive results of independent and cross species tests demonstrated that the performance of 4mCPred_I is a useful tool. To identify position-specific trinucleotide propensity (PSTNP) and electron-ion interaction potential features, we used the F-score method to construct predictive models and to compare their PSTNP features. Compared with other existing predictors, 4mCPred achieved much higher accuracies in rigorous jackknife and independent tests. We also analysed the importance of different features in detail.

UNASSIGNED

The web-server 4mCPred, is accessible at http://server.malab.cn/4mCPred/index.jsp.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge