Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Letters 2001-Feb

Plasma hyaluronidase (Hyal-1) promotes tumor cell cycling.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
G Lin
R Stern

키워드

요약

Paradoxically, both hyaluronan (HA) and hyaluronidase are involved in malignant transformation and cancer progression. Their mechanisms of action, given the apparent disparities, are not understood. In many malignancies, levels of HA correlate with metastatic behavior while hyaluronidases suppress malignant progression. Hyal-1, product of one of six paralogous hyaluronidase-like sequences, is the predominant circulating hyaluronidase. HYAL1, the gene that codes for Hyal-1, is located on chromosome 3p21.3, a region containing a tumor suppressor gene. Loss of HYAL1 often correlates with tumor progression, particularly in tobacco-related cancers. In other malignancies, however, hyaluronidase functions as a tumor promoter. Testicular hyaluronidase (PH-20), used as an adjuvant in chemotherapy, is assumed to enhance drug permeability. By an unknown mechanism, hyaluronidases recruit tumor cells back into the cycling pool, making these malignancies more sensitive to chemotherapeutic drugs. Such contradictory observations might be resolved by assuming that HA and hyaluronidase are required at different times in the multiple steps that lead to malignant transformation. We have undertaken a systematic investigation of their roles in cancer progression. Here, we investigate the effect of Hyal-1 expression on cell cycle kinetics. A tumor cell line was constructed with an ecdysone-inducible promoter located upstream from the cDNA of HYAL1. Fluorescent-activated cell sorting was used to monitor cell cycle kinetics following Hyal-1 induction. Enhanced cell cycling was observed, with a 13.6% increase in S phase and 9.6% decrease in G(1)/G(0) phase cells.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge