Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Environmental Quality

Reducing herbicides and veterinary antibiotics losses from agroecosystems using vegetative buffers.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Chung-Ho Lin
Robert N Lerch
Keith W Goyne
Harold E Garrett

키워드

요약

Multiple species vegetative buffer strips (VBSs) have been recommended as a cost-effective approach to mitigate agrochemical transport in surface runoff derived from agronomic operations, while at the same time offering a broader range of long-term ecological and environmental benefits. However, the effect of VBS designs and species composition on reducing herbicide and veterinary antibiotic transport has not been well documented. An experiment consisting of three VBS designs and one continuous cultivated fallow control replicated in triplicate was conducted to assess effectiveness in reducing herbicide and antibiotic transport for claypan soils. The three VBS designs include (i) tall fescue, (ii) tall fescue with a switchgrass hedge barrier, and (iii) native vegetation (largely eastern gamagrass). Rainfall simulation was used to create uniform antecedent soil moisture content in the plots and to generate runoff. Our results suggested that all VBS significantly reduced the transport of dissolved and sediment-bound atrazine, metolachlor, and glyphosate in surface runoff by 58 to 72%. Four to 8 m of any tested VBS reduced dissolved sulfamethazine transport in the surface runoff by more than 70%. The tall fescue VBS was overall most effective at reducing dissolved tylosin and enrofloxacin transport in the runoff (>75%). The developed exponential regression models can be used to predict expected field-scale results and provide design criteria for effective field implementation of grass buffers. Our study has demonstrated that an optimized VBS design may achieve desired agrochemical reductions and minimize acreage removed from crop production.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge