Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurology 2004-Jun

Reinvestigation of trihydroxycholestanoic acidemia reveals a peroxisome biogenesis disorder.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
J Gootjes
F Skovby
E Christensen
R J A Wanders
S Ferdinandusse

키워드

요약

OBJECTIVE

To determine the enzymatic defect in a patient with ataxia, dysarthric speech, dry skin, hypotonia, and absent reflexes. The patient was previously diagnosed with a presumed deficiency of trihydroxycholestanoyl-CoA oxidase.

BACKGROUND

Peroxisomes harbor a variety of metabolic functions, including fatty acid beta-oxidation, etherphospholipid biosynthesis, phytanic acid alpha-oxidation, and L-pipecolic acid oxidation. This patient was previously described with an isolated peroxisomal beta-oxidation defect caused by a deficiency of the enzyme trihydroxycholestanoyl-CoA oxidase. This was based on the pattern of accumulating metabolites.

METHODS

Measurement of beta-oxidation enzymes, peroxisomal biochemical analysis in body fluids and cultured skin fibroblasts, and DNA analysis of the PEX12 gene were performed.

RESULTS

An isolated beta-oxidation defect in this patient was excluded by measurement of the various beta-oxidation enzymes. The authors found that the patient had a peroxisome biogenesis disorder caused by mutations in the PEX12 gene, although all peroxisomal functions in cultured skin fibroblasts were normal.

CONCLUSIONS

The absence of clear peroxisomal abnormalities in the patient's fibroblasts, including a normal peroxisomal localization of catalase, implies that even when all peroxisomal functions in fibroblasts are normal, a peroxisome biogenesis disorder cannot be fully excluded, and further studies may be needed. In addition, the authors' findings imply that there is no longer evidence for the existence of trihydroxycholestanoyl-CoA oxidase deficiency as a distinct disease entity.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge