Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

indole 3 carboxylic acid/arabidopsis

링크가 클립 보드에 저장됩니다.
조항임상 시험특허
11 결과
Camalexin (3-thiazol-2'-yl-indole) is the major phytoalexin found in Arabidopsis thaliana. Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening and biochemical experiments. Camalexin is formed when indole-3-acetonitrile (IAN) is

The Biosynthetic Pathway of Indole-3-Carbaldehyde and Indole-3-Carboxylic Acid Derivatives in Arabidopsis.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Indolic secondary metabolites play an important role in pathogen defense in cruciferous plants. In Arabidopsis (Arabidopsis thaliana), in addition to the characteristic phytoalexin camalexin, derivatives of indole-3-carbaldehyde (ICHO) and indole-3-carboxylic acid (ICOOH) are synthesized from
• A hallmark of the innate immune system of plants is the biosynthesis of low-molecular-weight compounds referred to as secondary metabolites. Tryptophan-derived branch pathways contribute to the capacity for chemical defense against microbes in Arabidopsis thaliana. • Here, we investigated
A total of eleven alkali-released, aromatic compounds were identified by HPLC, MS and NMR analyses in cell wall extracts from Arabidopsis thaliana roots. Nine of them together constituted the three complete series of 4-hydroxy-, 4-hydroxy-3-methoxy, and 4-hydroxy-3,5-dimethoxy-substituted
The chemical structures and accumulation kinetics of several major soluble as well as wall-bound, alkali-hydrolyzable compounds induced upon infection of Arabidopsis thaliana leaves with Pseudomonas syringae pathovar tomato were established. All identified accumulating products were structurally

Dissection of the network of indolic defence compounds in Arabidopsis thaliana by multiple mutant analysis.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Characteristic for cruciferous plants is the synthesis of a complex array of defence-related indolic compounds. In Arabidopsis, these include indol-3-ylmethyl glucosinolates (IMGs), as well as stress-inducible indole-3-carbaldehyde (ICHO)/indole-3-carboxylic acid (ICOOH) derivatives and camalexin.
Accumulation of camalexin, the characteristic phytoalexin of Arabidopsis thaliana, is induced by a great variety of plant pathogens. It is derived from Trp, which is converted to indole-3-acetonitrile (IAN) by successive action of the cytochrome P450 enzymes CYP79B2/B3 and CYP71A13. Extracts from
The soil-borne fungal pathogen Verticillium longisporum causes vascular disease on Brassicaceae host plants such as oilseed rape. The fungus colonizes the root xylem and moves upwards to the foliage where disease symptoms become visible. Using Arabidopsis as a model for early gene induction, we

The role of CYP71A12 monooxygenase in pathogen-triggered tryptophan metabolism and Arabidopsis immunity.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Effective defense of Arabidopsis against filamentous pathogens requires two mechanisms, both of which involve biosynthesis of tryptophan (Trp)-derived metabolites. Extracellular resistance involves products of PEN2-dependent metabolism of indole glucosinolates (IGs). Restriction of further fungal
In Arabidopsis (Arabidopsis thaliana), a number of defense-related metabolites are synthesized via indole-3-acetonitrile (IAN), including camalexin and indole-3-carboxylic acid (ICOOH) derivatives. Cytochrome P450 71A13 (CYP71A13) is a key enzyme for camalexin biosynthesis and catalyzes the

Targeting novel chemical and constitutive primed metabolites against Plectosphaerella cucumerina.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
Priming is a physiological state for protection of plants against a broad range of pathogens, and is achieved through stimulation of the plant immune system. Various stimuli, such as beneficial microbes and chemical induction, activate defense priming. In the present study, we demonstrate that
페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge