Female-Specific Role of Progranulin to Suppress Bone Formation.
Raktažodžiai
Santrauka
Progranulin (PGRN) is best known as a glial protein for which deficiency leads to the most common inherited form of frontotemporal dementia. Recently, PGRN has been found to be an adipokine associated with diet-induced obesity and insulin resistance. Therefore, PGRN may have homeostatic effects on bone because PGRN is reported to promote the differentiation of bone-resorbing osteoclasts. We investigated the actions of PGRN on bone using PGRN gene (Grn) knockout (KO) mice and transgenic mice with PGRN mutation and surprisingly found that loss of PGRN prevented the bone loss in female mice induced by aging and estrogen deficiency, whereas it had no effect on male bones during aging. Strikingly, bone formation was increased in female (but not male) PGRN KO mice. We also found that loss of PGRN inhibited bone resorption and osteoclastogenesis in both male and female mice and promoted the production of osteogenic factors in osteoclast lineage cells. These results indicate that PGRN serves to uncouple bone turnover in female mice by promoting bone resorption and suppressing bone formation. Furthermore, we demonstrated that microglial cells/macrophages, but not adipocytes, are an important source of PGRN in producing negative skeletal effects in females. Targeting PGRN production by microglial cells/macrophage-lineage cells may provide a therapeutic approach for the treatment of osteoporosis in females.