Puslapis 1 nuo 37 rezultatus
Eucommia ulmoides Oliver (Du-Zhong) is an ancient Chinese herbal remedy used for the treatment of various diseases. To date, the effects of its constituent lignans on influenza viruses remain to be elucidated. In the present study, a lignan glycoside was isolated and purified from Eucommia ulmoides
The activation of microglia plays an important role in a variety of brain disorders by the excessive production of inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)) and proinflammatory cytokines. We investigated here whether pinoresinol isolated from the fruits of
OBJECTIVE
It has been suggested that lignan intake may decrease the risk for cardiovascular disease (CVD) by modifying traditional risk factors as well as aortic stiffness. However, the role of dietary lignans on the vascular system is largely unknown. The objective was to investigate whether
Poria cocos Wolf (Polyporaceae) has been used as a medicinal fungus to treat various diseases since ancient times. This study aimed to investigate the anti-inflammatory chemical constituents of the sclerotia of P. cocos. Based on bioassay-guided fractionation using lipopolysaccharide
"Hierba santa," a Peruvian herbal medicine, is used to alleviate many symptoms, including headache, hemorrhoids, fever, and rheumatism. Several Cestrum species are said to be the origin of hierba santa. Three lots of hierba santa: Cestrum auriculatum (herb 1 and herb 2) and C. hediundinum (herb 3),
Coptis japonica Makino (Ranunculaceae) is known to possess several biological activities such as anti-inflammatory effects. In this study, five lignans, isolariciresinol (1), lariciresinol glycoside (2), pinoresinol (3), pinoresinol glycoside (4) and syringaresinol glycoside (5), isolated from the
From the roots of Lepidium meyenii Walpers (Brassicaceae) have been isolated and identified 2 flavonolignans, tricin 4'-O-[threo-β-guaiacyl-(7″-O-methyl)-glyceryl] ether (1) and tricin 4'-O-(erythro-β-guaiacyl-glyceryl) ether (2), along with 11 other known compounds, tricin (3), pinoresinol (4),
BACKGROUND
GCSB-5, an herbal drug composition with an anti-inflammatory effect, is prepared by boiling, which is the most common herbal extraction method in traditional Korean medicine. Several parameters are involved in the process, i.e., extractant type, herb-to-extractant ratio, extraction
Conferin (1), a new isoflavone, has been isolated from the ethyl acetate soluble fraction of Caragana conferta Benth. along with seven known compounds, namely biochanin A (2), p-hydroxybenzoic acid (3), 3,5-dimethoxybenzoic acid (4), ursolic acid (5), erythrodiol (6), pinoresinol (7), and
In a series of anti-inflammatory screenings of lauraceous plants, the methanolic extract of the leaves of Machilus japonica var. kusanoi (Hayata) J.C. Liao showed potent inhibition on both superoxide anion generation and elastase release in human neutrophils. Bioassay-guided
BACKGROUND
Perovskia atriplicifolia Benth (Labiantae) has long been used as a traditional herbal medicine for anti-inflammation in Pakistan; this prompted us to isolate anti-inflammatory compounds from this plant.
OBJECTIVE
The objective of this study was to isolate and characterize the
Plant-derived lignans have numerous biological effects including anti-tumor and anti-inflammatory activities. Screening of purified constituents of Rubia philippinensis from human glioblastoma cells resistant to TNF-related apoptosis-inducing ligand (TRAIL) has suggested that the lignan pinoresinol
Dietary lignans show some promising health benefits, but little is known about their fate and activities in the small intestine. The purpose of this study was thus to investigate whether plant lignans are taken up by intestinal cells and modulate the intestinal inflammatory response using the Caco-2
Prunus domestica L. is an edible plant that is included in the family Rosaceae and proven to possess potent anti-inflammatory and anxiolytic activity. Pinoresinol-4-O-β-d-glucopyranoside (PGu) was isolated from Prunus domestica methanol extract and its structure was
Phytochemical investigation of Tephrosia vogelii seedpods led to the isolation of twelve compounds: vogelisoflavone A (1), vogelisoflavone B (2), isopongaflavone (3), onogenin, luteolin, 4',7-dihydroxy-3'-methoxyflavanone, trans-p-hydroxycinnamic acid, tephrosin, 2-methoxygliricidol,