Latvian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Genetics 2016-Dec

Challenges in Species Tree Estimation Under the Multispecies Coalescent Model.

Rakstu tulkošanu var veikt tikai reģistrēti lietotāji
Ielogoties Reģistrēties
Saite tiek saglabāta starpliktuvē
Bo Xu
Ziheng Yang

Atslēgvārdi

Abstrakts

The multispecies coalescent (MSC) model has emerged as a powerful framework for inferring species phylogenies while accounting for ancestral polymorphism and gene tree-species tree conflict. A number of methods have been developed in the past few years to estimate the species tree under the MSC. The full likelihood methods (including maximum likelihood and Bayesian inference) average over the unknown gene trees and accommodate their uncertainties properly but involve intensive computation. The approximate or summary coalescent methods are computationally fast and are applicable to genomic datasets with thousands of loci, but do not make an efficient use of information in the multilocus data. Most of them take the two-step approach of reconstructing the gene trees for multiple loci by phylogenetic methods and then treating the estimated gene trees as observed data, without accounting for their uncertainties appropriately. In this article we review the statistical nature of the species tree estimation problem under the MSC, and explore the conceptual issues and challenges of species tree estimation by focusing mainly on simple cases of three or four closely related species. We use mathematical analysis and computer simulation to demonstrate that large differences in statistical performance may exist between the two classes of methods. We illustrate that several counterintuitive behaviors may occur with the summary methods but they are due to inefficient use of information in the data by summary methods and vanish when the data are analyzed using full-likelihood methods. These include (i) unidentifiability of parameters in the model, (ii) inconsistency in the so-called anomaly zone, (iii) singularity on the likelihood surface, and (iv) deterioration of performance upon addition of more data. We discuss the challenges and strategies of species tree inference for distantly related species when the molecular clock is violated, and highlight the need for improving the computational efficiency and model realism of the likelihood methods as well as the statistical efficiency of the summary methods.

Pievienojieties mūsu
facebook lapai

Vispilnīgākā ārstniecības augu datu bāze, kuru atbalsta zinātne

  • Darbojas 55 valodās
  • Zāļu ārstniecības līdzekļi, kurus atbalsta zinātne
  • Garšaugu atpazīšana pēc attēla
  • Interaktīva GPS karte - atzīmējiet garšaugus atrašanās vietā (drīzumā)
  • Lasiet zinātniskās publikācijas, kas saistītas ar jūsu meklēšanu
  • Meklēt ārstniecības augus pēc to iedarbības
  • Organizējiet savas intereses un sekojiet līdzi jaunumiem, klīniskajiem izmēģinājumiem un patentiem

Ierakstiet simptomu vai slimību un izlasiet par garšaugiem, kas varētu palīdzēt, ierakstiet zāli un redziet slimības un simptomus, pret kuriem tā tiek lietota.
* Visa informācija ir balstīta uz publicētiem zinātniskiem pētījumiem

Google Play badgeApp Store badge