Latvian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Biology and Evolution 2007-Aug

Fair-balance paradox, star-tree paradox, and Bayesian phylogenetics.

Rakstu tulkošanu var veikt tikai reģistrēti lietotāji
Ielogoties Reģistrēties
Saite tiek saglabāta starpliktuvē
Ziheng Yang

Atslēgvārdi

Abstrakts

The star-tree paradox refers to the conjecture that the posterior probabilities for the three unrooted trees for four species (or the three rooted trees for three species if the molecular clock is assumed) do not approach 1/3 when the data are generated using the star tree and when the amount of data approaches infinity. It reflects the more general phenomenon of high and presumably spurious posterior probabilities for trees or clades produced by the Bayesian method of phylogenetic reconstruction, and it is perceived to be a manifestation of the deeper problem of the extreme sensitivity of Bayesian model selection to the prior on parameters. Analysis of the star-tree paradox has been hampered by the intractability of the integrals involved. In this article, I use Laplacian expansion to approximate the posterior probabilities for the three rooted trees for three species using binary characters evolving at a constant rate. The approximation enables calculation of posterior tree probabilities for arbitrarily large data sets. Both theoretical analysis of the analogous fair-coin and fair-balance problems and computer simulation for the tree problem confirmed the existence of the star-tree paradox. When the data size n --> infinity, the posterior tree probabilities do not converge to 1/3 each, but they vary among data sets according to a statistical distribution. This distribution is characterized. Two strategies for resolving the star-tree paradox are explored: (1) a nonzero prior probability for the degenerate star tree and (2) an increasingly informative prior forcing the internal branch length toward zero. Both appear to be effective in resolving the paradox, but the latter is simpler to implement. The posterior tree probabilities are found to be very sensitive to the prior.

Pievienojieties mūsu
facebook lapai

Vispilnīgākā ārstniecības augu datu bāze, kuru atbalsta zinātne

  • Darbojas 55 valodās
  • Zāļu ārstniecības līdzekļi, kurus atbalsta zinātne
  • Garšaugu atpazīšana pēc attēla
  • Interaktīva GPS karte - atzīmējiet garšaugus atrašanās vietā (drīzumā)
  • Lasiet zinātniskās publikācijas, kas saistītas ar jūsu meklēšanu
  • Meklēt ārstniecības augus pēc to iedarbības
  • Organizējiet savas intereses un sekojiet līdzi jaunumiem, klīniskajiem izmēģinājumiem un patentiem

Ierakstiet simptomu vai slimību un izlasiet par garšaugiem, kas varētu palīdzēt, ierakstiet zāli un redziet slimības un simptomus, pret kuriem tā tiek lietota.
* Visa informācija ir balstīta uz publicētiem zinātniskiem pētījumiem

Google Play badgeApp Store badge