Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant.
Atslēgvārdi
Abstrakts
Reactive oxygen species contribute to ischemic brain injury. This study examined whether the porphyrin catalytic antioxidant manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) reduces oxidative stress and improves outcome from experimental cerebral ischemia. Rats that were subjected to 90 min focal ischemia and 7 d recovery were given MnTE-2-PyP(5+) (or vehicle) intracerebroventricularly 60 min before ischemia, or 5 or 90 min or 6 or 12 hr after reperfusion. Biomarkers of brain oxidative stress were measured at 4 hr after postischemic treatment (5 min or 6 hr). MnTE-2-PyP(5+), given 60 min before ischemia, improved neurologic scores and reduced total infarct size by 70%. MnTE-2-PyP(5+), given 5 or 90 min after reperfusion, reduced infarct size by 70-77% and had no effect on temperature. MnTE-2-PyP(5+) treatment 6 hr after ischemia reduced total infarct volume by 54% (vehicle, 131 +/- 60 mm(3); MnTE-2-PyP(5+), 300 ng, 60 +/- 68 mm(3)). Protection was observed in both cortex and caudoputamen, and neurologic scores were improved. No MnTE-2-PyP(5+) effect was observed if it was given 12 hr after ischemia. MnTE-2-PyP(5+) prevented mitochondrial aconitase inactivation and reduced 8-hydroxy-2'-deoxyguanosine formation when it was given 5 min or 6 hr after ischemia. In mice, MnTE-2-PyP(5+) reduced infarct size and improved neurologic scores when it was given intravenously 5 min after ischemia. There was no effect of 150 or 300 ng of MnTE-2-PyP(5+) pretreatment on selective neuronal necrosis resulting from 10 min forebrain ischemia and 5 d recovery in rats. Administration of a metalloporphyrin catalytic antioxidant had marked neuroprotective effects against focal ischemic insults when it was given up to 6 hr after ischemia. This was associated with decreased postischemic superoxide-mediated oxidative stress.