Latvian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Proteome Research 2013-May

Predicting tryptic cleavage from proteomics data using decision tree ensembles.

Rakstu tulkošanu var veikt tikai reģistrēti lietotāji
Ielogoties Reģistrēties
Saite tiek saglabāta starpliktuvē
Thomas Fannes
Elien Vandermarliere
Leander Schietgat
Sven Degroeve
Lennart Martens
Jan Ramon

Atslēgvārdi

Abstrakts

Trypsin is the workhorse protease in mass spectrometry-based proteomics experiments and is used to digest proteins into more readily analyzable peptides. To identify these peptides after mass spectrometric analysis, the actual digestion has to be mimicked as faithfully as possible in silico. In this paper we introduce CP-DT (Cleavage Prediction with Decision Trees), an algorithm based on a decision tree ensemble that was learned on publicly available peptide identification data from the PRIDE repository. We demonstrate that CP-DT is able to accurately predict tryptic cleavage: tests on three independent data sets show that CP-DT significantly outperforms the Keil rules that are currently used to predict tryptic cleavage. Moreover, the trees generated by CP-DT can make predictions efficiently and are interpretable by domain experts.

Pievienojieties mūsu
facebook lapai

Vispilnīgākā ārstniecības augu datu bāze, kuru atbalsta zinātne

  • Darbojas 55 valodās
  • Zāļu ārstniecības līdzekļi, kurus atbalsta zinātne
  • Garšaugu atpazīšana pēc attēla
  • Interaktīva GPS karte - atzīmējiet garšaugus atrašanās vietā (drīzumā)
  • Lasiet zinātniskās publikācijas, kas saistītas ar jūsu meklēšanu
  • Meklēt ārstniecības augus pēc to iedarbības
  • Organizējiet savas intereses un sekojiet līdzi jaunumiem, klīniskajiem izmēģinājumiem un patentiem

Ierakstiet simptomu vai slimību un izlasiet par garšaugiem, kas varētu palīdzēt, ierakstiet zāli un redziet slimības un simptomus, pret kuriem tā tiek lietota.
* Visa informācija ir balstīta uz publicētiem zinātniskiem pētījumiem

Google Play badgeApp Store badge