[Recent results on the pharmacodynamics of Strychnos malgaches alkaloids].
Atslēgvārdi
Abstrakts
Investigation of Strychnos (Loganiaceae) shrubs and trees was initiated by their traditional uses of their inherent poisons on arrows: this led to the discovery of strychnine and curare alkaloids. Subsequently, phytochemical investigation of several Strychnos species has shown great structural diversity of the alkaloid constituent which also display various biological effects, i.e. convulsive and relaxant effects on muscles, and antimicrobial, antitumor and antihypertensive properties. Ethnobotanical field work conducted in different regions of Madagascar revealed that infusion of three Strychnos species, S. mostueoides, S. myrtoides and S. diplotricha, is used in association with subcurative doses of chloroquine to treat chronic malaria. Bioassayfractionation led to the isolation of two major bioactive components, strychnobrasiline and malagashanine. Whereas strychnobrasiline is a previously known chemical compound, malagashanine is the first in a series of a new subtype of Strychnos alkaloids. These two alkaloids are devoid of intrinsic antimalarial effects, both in vitro (IC50 = 73.0 micrograms/ml for strychnobrasiline and 69.1 micrograms/ml for malagashanine) and in vivo (10 mg/kg conferred a 5% suppression of parasitemia). When these alkaloids are combined with chloroquine at doses much lower than required for antiplasmodial effects, they greatly enhance the chloroquine action in a dose dependent manner as seen by the isobologram method. Several minor alkaloids structurally related to malagashanine were also isolated from Madagascan Strychnos. They all enhance, to greater or lesser degrees, the chloroquine effectiveness. Interestingly, there is a positive correlation between the ethnomedical use of the three Strychnos species as chloroquine adjuvants and the chloroquine-potentiating effects of malagashanine and strychnobrasiline isolated from them. After preliminary toxicological studies, infusion of stem barks of S. myrtoides in association with chloroquine was successfully evaluated in a clinical setting. Additional chemical, pharmacological and toxicological work is being conducted on these alkaloids with the aim of developing purified and standardized extracts for clinical trials. These trials will be carried out in the chloroquine-resistant regions of Madagascar which are in need of inexpensive and efficient drugs for the treatment of chloroquine-resistant malaria.