Latvian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2020-Jan

The theoretical direct-band-gap optical gain of Germanium nanowires.

Rakstu tulkošanu var veikt tikai reģistrēti lietotāji
Ielogoties Reģistrēties
Saite tiek saglabāta starpliktuvē
Wen Xiong
Jian-Wei Wang
Wei-Jun Fan
Zhi-Gang Song
Chuan-Seng Tan

Atslēgvārdi

Abstrakts

We calculate the electronic structures of Germanium nanowires by taking the effective-mass theory. The electron and hole states at the Γ-valley are studied via the eight-band k.p theory. For the [111] L-valley, we expand the envelope wave function using Bessel functions to calculate the energies of the electron states for the first time. The results show that the energy dispersion curves of electron states at the L-valley are almost parabolic irrespective of the diameters of Germanium nanowires. Based on the electronic structures, the density of states of Germanium nanowires are also obtained, and we find that the conduction band density of states mostly come from the electron states at the L-valley because of the eight equivalent degenerate L points in Germanium. Furthermore, the optical gain spectra of Germanium nanowires are investigated. The calculations show that there are no optical gain along z direction even though the injected carrier density is 4 × 1019 cm-3 when the doping concentration is zero, and a remarkable optical gain can be obtained when the injected carrier density is close to 1 × 1020 cm-3, since a large amount of electrons will prefer to occupy the low-energy L-valley. In this case, the negative optical gain will be encountered considering free-carrier absorption loss as the increase of the diameter. We also investigate the optical gain along z direction as functions of the doping concentration and injected carrier density for the doped Germanium nanowires. When taking into account free-carrier absorption loss, the calculated results show that a positive net peak gain is most likely to occur in the heavily doped nanowires with smaller diameters. Our theoretical studies are valuable in providing a guidance for the applications of Germanium nanowires in the field of microelectronics and optoelectronics.

Pievienojieties mūsu
facebook lapai

Vispilnīgākā ārstniecības augu datu bāze, kuru atbalsta zinātne

  • Darbojas 55 valodās
  • Zāļu ārstniecības līdzekļi, kurus atbalsta zinātne
  • Garšaugu atpazīšana pēc attēla
  • Interaktīva GPS karte - atzīmējiet garšaugus atrašanās vietā (drīzumā)
  • Lasiet zinātniskās publikācijas, kas saistītas ar jūsu meklēšanu
  • Meklēt ārstniecības augus pēc to iedarbības
  • Organizējiet savas intereses un sekojiet līdzi jaunumiem, klīniskajiem izmēģinājumiem un patentiem

Ierakstiet simptomu vai slimību un izlasiet par garšaugiem, kas varētu palīdzēt, ierakstiet zāli un redziet slimības un simptomus, pret kuriem tā tiek lietota.
* Visa informācija ir balstīta uz publicētiem zinātniskiem pētījumiem

Google Play badgeApp Store badge