Lappuse 1 no 34 rezultātiem
Hydroxycinnamic acid amides (HCAAs) are secondary metabolites involved in the defense of plants against pathogens. Here, we report the first identification of HCAAs, p-coumaroylagmatine, feruloylagmatine, p-coumaroylputrescine and feruloylputrescine, in Arabidopsis thaliana rosette leaves infected
BACKGROUND
The aromatic compounds cinnamic acid (CA) and p-hydroxycinnamic acid (pHCA) are used as flavoring agents as well as precursors of chemicals. These compounds are present in plants at low concentrations, therefore, complex purification processes are usually required to extract the product.
Hydroxycinnamic acid amides (HCAAs) are a class of antimicrobial metabolites involved in plant defense against necrotrophic pathogens, including Alternaria brassicicola and Botrytis cinerea. The agmatine coumaryl transferase (AtACT) is the key enzyme that catalyzes the last reaction in the
The ability of Arabidopsis thaliana to successfully prevent colonization by Phytophthora infestans, the causal agent of late blight disease of potato (Solanum tuberosum), depends on multilayered defense responses. To address the role of surface-localized secondary metabolites for entry control,
Phenylpropanoid polyamine conjugates are widespread in plant species. Their presence has been established in seeds, flower buds, and pollen grains. A biosynthetic pathway proposed for hydroxycinnamoyl spermidine conjugates has been suggested for the model plant Arabidopsis thaliana with a central
The phenylpropanoid pathway in plants leads to the synthesis of a wide range of soluble secondary metabolites, many of which accumulate as glycosides. In Arabidopsis, a small cluster of three closely related genes, UGT72E1-E3, encode glycosyltransferases shown to glucosylate several phenylpropanoids
We report that the cDNA clone (Accession No. U70424), previously isolated from Arabidopsis thaliana as encoding a caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT) (1), has now been overexpressed in Escherichia coli BL21 and its recombinant protein identified as a novel flavonol 3'-OMT.
Phenolamides, so called hydroxycinnamic acid amides, are specialized metabolites produced in higher plants, involved in development, reproduction and serve as defence compounds in biotic interactions. Among them, trihydroxycinnamoyl spermidine derivatives were initially found to be synthetized by a
The phenylpropanoid pathway is used in biosynthesis of a wide range of soluble secondary metabolites including hydroxycinnamic acid esters, flavonoids and the precursors of lignin and lignans. In Arabidopsis thaliana a small cluster of three closely related genes, UGT72E1-E3, encode
Arabidopsis thaliana and other members of the Brassicaceae accumulate the hydroxycinnamic acid esters sinapoylmalate in leaves and sinapoylcholine in seeds. Our recent understanding of the phenylpropanoid pathway although complex has enabled us to perturb the sinapine biosynthesis pathway in plants.
Polyamines (PAs) like putrescine, spermidine, and spermine are ubiquitous polycationic molecules that occur in all living cells and have a role in a wide variety of biological processes. High amounts of spermidine conjugated to hydroxycinnamic acids are detected in the tryphine of Arabidopsis
Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key
The enzyme phytochelatin synthase (PCS) has long been studied with regard to its role in metal(loid) detoxification in several organisms, i.e., plants, yeasts, and nematodes. It is in fact widely recognized that PCS detoxifies a number of heavy metals by catalyzing the formation of thiol-rich
BACKGROUND
The phenylpropanoid pathway is a source of a diverse group of compounds derived from phenylalanine, many of which are involved in lignin biosynthesis and serve as precursors for the production of valuable compounds, such as coumarins, flavonoids, and lignans. Consequently, recent efforts
The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Whereas the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it