Lappuse 1 no 33 rezultātiem
Asymmetric nuclear hybrids have been obtained by fusion of cells from a nitrate-reductase deficient mutant of Nicotiana plumbaginifolia (cnx20) and gamma irradiated protoplasts of Atropa belladonna (irradiation doses tested were 10, 30, 50 and 100 krad). The hybrid formation frequency following
After fusion of isolated mesophyll protoplasts of belladonna (Atropa belladonna) with callus protoplasts of Chinese tobacco (Nicotiana chinensis) followed by mechanical isolation and cloning of individual heteroplasmic fusion products, 13 cell clones were obtained. The hybrid nature of most of the
The genetic constitution of the cell hybrids Atropa belladonna + Nicotiana chinensis, obtained by cloning of individual heteroplasmic protoplast fusion products (Gleba et al. 1982) and cultured in vitro for 12 months, has been studied. The study comprised 11 hybrid cell clones of independent origin
Mesophyll protoplasts of the kanamycin-resistant nightshade, Atropa belladonna, were fused with mesophyll protoplasts of the phosphinothricin resistant-tobacco, Nicotiana tabacum. A total of 447 colonies resistant to both inhibitors was selected. Most of them regenerated shoots with morphology
The nuclear and plastid genomes of the plant cell form a coevolving unit which in interspecific combinations can lead to genetic incompatibility of compartments even between closely related taxa. This phenomenon has been observed for instance in Atropa-Nicotiana cybrids. We have sequenced the
Protoplast fusion of Nicotiana tabacum (B6S3) crown gall cells and Atropa belladonna leaf mesophyll cells was carried out. Hybrids were selected for their capacity to grow on hormone-free media and to green in light. Shoots incapable of rhizogenesis were regenerated on the same media and grafted
Twenty-nine cybrids possessing an Atropa belladonna nuclear genome and a Nicotiana tabacum plastome were selected from two independent protoplast fusion experiments. In contrast to the previously described reciprocal, green and fertile cybrids with a Nicotiana nuclear genome and an Atropa plastome
Mesophyll protoplasts of plastome chlorophyll-deficient, streptomycin-resistant Nicotiana tabacum were fused with those of wild type Atropa belladonna using the polyethylene-glycol/high Ca++/dimethylsulfoxide method. Protoplasts were cultured in nutrient media suitable for regeneration of tobacco
Isolated, nick-translated Pvu II fragments of Nicotiana tabacum chloroplast DNA produce specific intra- and intergeneric hybridization signals with chloroplast DNA digests from several representatives of the Solanaceae. These data, along with similarities in restriction enzyme patterns, permit
Behavior of ribosomal RNA genes in the process of somatic hybridization was analyzed using hybrids Nicotiana tabacum + Atropa belladonna. Blothybridization of parental species DNAs to (32)P-rDNA specific probes revealed two classes of ribosomal repeats in both tobacco and nightshade; their length
The subgenomes of the plant cell, the nuclear genome, the plastome, and the chondriome are known to interact through various types of coevolving macromolecules. The combination of the organellar genome from one species with the nuclear genome of another species often leads to plants with deleterious
In this study we have constructed a number of plants (cybrids), in which the nuclear genome of Nicotiana plumbaginifolia is combined with the plastome of Atropa belladonna, or the nuclear genome of N. tabacum with plastomes of Lycium barbarum, Scopolia carniolica, Physochlaine officinalis or Nolana
Putrescine N-methyltransferase (PMT, EC 2.1.1.53) catalyses the first specific step in the biosynthesis of tropane and nicotine alkaloids. Potato (Solanum tuberosum L.) contains neither nicotine nor the medicinal tropane alkaloids hyoscyamine or scopolamine, but calystegines. They are nortropane
An antifungal protein, designated MCha-Pr, was isolated from the intercellular fluid of bitter gourd (Momordica charantia) leaves during a screen for potent antimicrobial proteins from plants. The isolation procedure involved a combination of extraction, ammonium sulphate precipitation, gel
The cDNAs encoding putrescine N-methyltransferase (PMT), which catalyzes the S-adenosylmethionine-dependent N-methylation of putrescine at the first committed step in the biosynthetic pathways of tropane alkaloids, were isolated from Atropa belladonna and Hyoscyamus niger. These PMTs, however,