Lappuse 1 no 349 rezultātiem
Previous studies have demonstrated a role for norepinephrine (NE) in energy regulation and feeding, and basal differences have been observed in hypothalamic NE systems in obesity-prone vs. obesity-resistant rats. Differences in the function of brain reward circuits, including in the nucleus
Obesity is a significant problem in the United States, with roughly one third of adults having a body mass index (BMI) over thirty. Recent evidence from human studies suggests that pre-existing differences in the function of mesolimbic circuits that mediate motivational processes may promote obesity
Obesity is a cause of sleep breathing disorders that result in excessive daytime sleepiness. We describe the adaptive strategy used by an obese person who started to snort cocaine to remedy incoercible drowsiness affecting his working financial skills. Clinical workup documented severe sleep apnea,
Butyrylcholinesterase (BChE), a plasma enzyme that hydrolyses the neurotransmitter, acetylcholine relatively well, with far lower efficiency than acetylcholinesterase (AChE) but with the capability to degrade a broad range of bioactive esters. AChE is universally understood as essential to
A long-acting cocaine hydrolase, known as CocH3-Fc(M3), engineered from human butyrylcholinesterase (BChE) was tested, in this study, for its potential anti-obesity effects. Mice on a high-fat diet gained significantly less body weight when treated weekly with 1 mg/kg CocH3-Fc(M3) compared to
BACKGROUND
The identification of biomarkers associated with obesity and response to treatment could represent an important advance to design more effective and personalized therapeutic strategies. The complexity of morbid obesity could be explained as the combination of genetic, biochemical,
Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed in brain areas involved in homeostatic regulation and reward. CART has been shown to reduce food intake, but the underlying mechanisms and the relevance of this effect on obesity yet remain unknown. Therefore, we used
OBJECTIVE
The cocaine and amphetamine-regulated transcript (CART) is expressed in the brain of rodents and humans, and intracerebroventricular injection of the peptide in rats reduces food intake. The objective of the present study was to chromosomally map the CART gene and to examine the coding
Cocaine and amphetamine-regulated transcript (CART) mRNA and immunoreactivity are expressed abundantly in the hypothalamus. Central administration of various fragments of this neuropeptide decreases food intake in rodents. To find out whether CART might play a role in the physiological regulation of
Evidence indicates that obese individuals exhibit alterations in brain-reward function that are anatomically and functionally similar to what has been observed in drug addicts, which could theoretically make obese individuals vulnerable to drug abuse and drug abusers vulnerable to overeating.
Monosodium glutamate (MSG) treatment of neonatal mice results in a selective damage to the arcuate nucleus (ARC) and development of obesity with increased adiposity at sustained body weight in the adulthood. Feeding pattern of the MSG obese mice is unusual. Our previous results showed that after
OBJECTIVE
We tested the hypothesis that polymorphisms in the cocaine- and amphetamine-regulated-transcript (CART) gene is associated with the development of obesity.
METHODS
Five-hundred and twenty-eight subjects (325 men and 203 women) aged 49.6+/-11.0 y with body mass index (BMI) of
Nesfatin-1, processed from nucleobindin-2 (NUCB2), is a potent anorexigenic peptide being expressed in rodent hypothalamic nuclei and involved in the regulation of feeding behavior and body weight in animals. The present study aimed to investigate NUCB2/nesfatin-1 protein expression in Epidemiologic studies show that cocaine- and amphetamine-regulated transcript prepropeptide (CARTPT) gene polymorphism modifies diet-obesity relationships. However, the interaction between CARTPT gene polymorphism and diet quality indices have not been investigated yet. The current BACKGROUND
Cocaine- and amphetamine-regulated transcript (CART) is expressed within hypothalamic nuclei implicated in the regulation of feeding behaviour. It is up-regulated by leptin, and CART-derived peptides acutely inhibit food intake.
OBJECTIVE
The present study was designed to assess the