7 rezultātiem
Coclaurine N-methyltransferase from Coptis japonica catalyzes the N-methylation of coclaurine as well as simple tetrahydroisoquinoline. We examined the possibility of converting 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline into its N-methylated product using transgenic Escherichia coli, which
S-Adenosyl-L-methionine (SAM): coclaurine N-methyltransferase (CNMT), which catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the amino group of the tetrahydrobenzylisoquinoline alkaloid coclaurine. was purified 340-fold from Coptis japonica cells in 1% yield to give an almost
S-adenosyl-L-methionine:coclaurine N-methyltransferase (CNMT) converts coclaurine to N-methylcoclaurine in isoquinoline alkaloid biosynthesis. The N-terminal amino acid sequence of Coptis CNMT was used to amplify the corresponding cDNA fragment and later to isolate full-length cDNA using 5'- and
Transcriptome resources for the medicinal plant Glaucium flavum were searched for orthologs showing identity with characterized O-methyltransferases (OMTs) involved in benzylisoquinoline alkaloid biosynthesis. Seven recombinant proteins were functionally tested using the signature alkaloid
S-Adenosyl-l-methionine:tetrahydroprotoberberine cis-N-methyltransferase (EC 2.1.1.122) catalyzes the conversion of (S)-stylopine to the quaternary ammonium alkaloid, (S)-cis-N-methylstylopine, as a key step in the biosynthesis of protopine and benzophenanthridine alkaloids in plants. A full-length
Opium poppy (Papaver somniferum) produces a large number of benzylisoquinoline alkaloids, including morphine and sanguinarine, derived from tyrosine via the branch-point intermediate (S)-reticuline. Molecular clones for the three methlytransferases involved in (S)-reticuline biosynthesis,
The dried rhizomes of Coptis chinensis have been extensively used in heat clearing, dampness drying, fire draining, and detoxification by virtue of their major bioactive components, benzylisoquinoline alkaloids (BIAs). However, C. teeta and C. chinensis are occasionally interchanged, and current