6 rezultātiem
Two cytosolic, acidic (pI 3.8) glycoproteins (M(r) 110,000 and 90,000) from lignifying xylem of Pinus banksiana were electrophoretically isolated and confirmed by combined gas chromatography-mass spectrometry to be capable of hydrolysing E-coniferin to trans-coniferyl alcohol. These isoenzymes
Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1. 195) has been purified to homogeneity from differentiating xylem tissue and developing seeds of loblolly pine (Pinus taeda L.). The enzyme is a dimer with a native molecular weight of 82,000 and a subunit molecular weight of 44,000, and is the only form
Juvenile wood (JW) of conifers is often associated with compression wood (CW), with which it is sometimes believed to be identical. To determine whether JW and CW can be distinguished metabolically, we compared gas chromatographic profiles of 25 polar metabolites from rooted cuttings of a single
We examined the relationship between beta-glucosidase and peroxidase activities and xylem lignification in the stems of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth) during the 1999 growing season. Examination of stem cross sections
A tissue culture system has been developed to examine phenylpropanoid metabolism induced in pine tissues by an ectomycorrhizal symbiont. An elicitor preparation from the ectomycorrhizal fungus Thelephora terrestris Fr. induced enhanced phenolic metabolism in suspension cultured cells of Pinus
4-Coumarate:CoA ligase (4CL, EC 6.2.1.12) was purified from differentiating xylem of loblolly pine (Pinus taeda L.). The pine enzyme had an apparent molecular mass of 64 kD and was similar in size and kinetic properties to 4CL isolated from Norway spruce. The pine enzyme used 4-coumaric acid,