Lappuse 1 no 231 rezultātiem
Colonization of plant rhizosphere/roots by beneficial microorganisms (e.g. plant growth promoting rhizobacteria - PGPR, arbuscular mycorrhizal fungi - AMF) confers broad-spectrum resistance to virulent pathogens and is known as induced systemic resistance (ISR) and mycorrhizal-induced resistance
Ethylene release by potato shoots cultured in closed boxes was suppressed by the addition of silver thiosulfate to the culture medium. Shoots cultured in the presence of silver thiosulfate produced appreciably more tissue and the yield of protoplasts per unit tissue mass was vastly increased,
The aim of this study was to investigate the role of ethylene to control sprouting of potatoes by observing the effect of exogenous ethylene on carbohydrate metabolism and key enzymes. The initial time of potato tuber sprouting and sprouting index were recorded, and rate of respiration, total sugar,
Ethanol, acetaldehyde, and acetic acid, when applied in a volatile state in air to potato tubers, led to a climacteric-like upsurge in respiration. The respiratory upsurge was markedly enhanced when the volatiles were applied in 100% O(2).Ethanol induced a decline in the level of 2-phosphoglyceric
In a series of full-scale tests, the effectiveness of various fumigant treatments for the eradication of potato ring rot bacteria from bulk lots of contaminated jute bags was evaluated. Survival of these bacteria on infested sample fibers located at various positions within and around a tightly
An alternative synthesis of (Z)-3-dodecen-1-y1 (E)-2-butenoate without use of carcinogenic ethylene oxide and HMPA is described. By coupling of the tetrahydropyranyl (THP) ether of 3-butyn-1-ol with 1-bromooctane with sodamide in liquid ammonia, 12-(2-tetrahydropyranyloxy)-9-dodecyne was obtained;
Leaves and storage roots of sweet potato plants (Ipomea batatas) showed the same qualitative isoperoxidase patterns and a similar distribution of distinctive isoperoxidases between the cell protoplast and cell wall free, ionically bound, and covalently bound fractions. No changes in the qualitative
Cyanide-resistant O(2) consumption can be stimulated by either treating whole white potato tubers (Norchip) with ethylene, in the presence of 100% O(2), or aging slices obtained from untreated potato tubers. A comparison of alternative pathway activity elicited by either treatment was undertaken.
Transgenic potato plants (SS2 and SS4) that overexpressed a chloroplastic copper/zinc superoxide dismutase lily gene were utilized as an H(2)O(2)-inducible system in order to study the role of H(2)O(2) as a signaling molecule in the biosynthesis of ethylene. SS2 and SS4 plants grown in vitro under
To identify components of the plant stress signal transduction cascade and response mechanisms, we screened plant genes using reverse Northern blot analysis, and chose the ethylene responsive element binding protein 1 (StEREBP1) for further characterization. To investigate its biological function in
Ethylene inhibited the tuberization of etiolated potato (Solanum tuberosum L. var. Red La Soda) sprout sections cultured in vitro. Carbon dioxide did not overcome the C(2)H(4) inhibition but it was required for normal tuberization. Ethylene totally prevented root formation and development. It
The role of ethylene in the development of constant-light injury of potato (Solanum tuberosum L.) and tomato (Lycopersicon esculentum Mill.) was investigated. In one study, silver thiosulfate (STS) was applied to the foliage of four potato cultivars growing under constant light. Leaf area and shoot
Ethylene and cyanide induce a sharp increase in respiration in potato tubers (Solanum tuberosum, var. Russet) attended by changes in the glycolytic intermediates which indicate that both gases enhance glycolysis. The level of sucrose also increases in response to both treatments. The data are taken
Exposure of root tissue from a susceptible variety of sweet potato to low concentrations of ethylene induced a resistance to infection by Ceratocystis fimbriata and an increase in the activity of peroxidase and polyphenoloxidase in the tissue. Susceptible tissue that was inoculated with a pathogenic
The relationships among O3-induced accelerated senescence, induction of ethylene, and changes in specific mRNA and protein levels were investigated in potato (Solanum tuberosum L. cv Norland) plants. When plants were exposed to 0.08 [mu]L L-1 O3 for 5 h d-1, steady-state levels of rbcS mRNA declined