Lappuse 1 no 340 rezultātiem
Phvytophthora megakarya is a devastating oomycete pathogen that causes black pod disease in cacao. Phytophthora species produce a protein that has a similar sequence to the necrosis and ethylene inducing protein (Nep1) of Fusarium oxysporum. Multiple copies of NEP1 orthologs (PmegNEP) have been
The necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) are proteins secreted from bacteria, fungi and oomycetes, triggering immune responses and cell death in dicotyledonous plants. Genomic-scale studies of Moniliophthora perniciosa, the fungus that causes the Witches' Broom
We have recently demonstrated that a single injection of the mitogen lead nitrate to rats induced a rapid increase of tumor necrosis factor-alpha (TNF-alpha) mRNA in the liver and suggested that this cytokine may be involved in triggering hepatocyte proliferation in this model of direct hyperplasia.
Treatment of Arabidopsis (Arabidopsis thaliana) with a necrosis- and ethylene-inducing peptide (Nep1) from Fusarium oxysporum inhibited both root and cotyledon growth and triggered cell death, thereby generating necrotic spots. Nep1-like proteins are produced by divergent microbes, many of which are
Successful host colonization by necrotrophic plant pathogens requires the induction of plant cell death to provide the nutrients needed for infection establishment and progression. We have cloned two genes encoding necrosis and ethylene-inducing peptides from Sclerotinia sclerotiorum, which we named
We have previously demonstrated that a protein purified from xylan-induced culture filtrates of Trichoderma viride contains beta-1,4-endoxylanase activity and induces ethylene biosynthesis in tobacco (Nicotiana tabacum cv Xanthi) leaf discs. When the ethylene biosynthesis-inducing xylanase (EIX) was
Neofusicoccum parvum is a fungal pathogen associated with a wide range of plant hosts. Despite being widely studied, the molecular mechanism of infection of N. parvum is still far from being understood. Analysis of N. parvum genome lead to the identification of six putative
The hemibiotrophic basidiomycete Moniliophthora perniciosa causes witches' broom disease of Theobroma cacao. Analysis of the M. perniciosa draft genome led to the identification of three putative genes encoding necrosis and ethylene-inducing proteins (MpNEPs), which are apparently located on the
Analysis of chemically cross-linked recombinant human tumor necrosis factor (rTNF) on sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the presence of three distinct molecular forms which correspond to trimers, dimers, and monomers. The cross-linking procedure appeared to enhance
Verticillium dahliae Kleb. is a hemibiotrophic, phytopathogenic fungus that causes wilt disease in a wide range of crops, including cotton. Successful host colonization by hemibiotrophic pathogens requires the induction of plant cell death to provide the saprophytic nutrition for the transition from
Understanding how Nep-like proteins (NLPs) behave during the cell cycle and disease progression of plant pathogenic oomycetes, fungi and bacteria is crucial in light of compelling evidence that these proteins play a role in Witches` Broom Disease (WBD) of Theobroma cacao, one of the most important
Ethylene glycol monomethyl ether (EGME) is a major component of paints, lacquers, inks, and automobile brake fluids. As a result, exposures to humans are inevitable. We therefore, investigated in this study, its effect on testicular cells in a time-course manner in male Wistar rats. Animals were