Lappuse 1 no 40 rezultātiem
1. Effect of (-)-epigallocatechin-3-O-gallate (EGCG), a condensed tannin isolated from green tea leaves, on the life span and hypertensive lesions in the stroke-prone spontaneously hypertensive rat (SHRSP) was compared with that of persimmon tannin. 2. Long-term administration of either 0.5% EGCG or
(-)-Epigallocatechin-3‑gallate (EGCG), the predominant constituent of green tea, has been demonstrated to be neuroprotective against stroke in rats. However, the precise mechanism of EGCG responsible for neuroprotective activity remains unclear and no established treatment for decreasing the
Epigallocatechin-3-gallate (EGCG) is the major effective component of green tea and has been known as a potential anticancer drug because of its antioxidant and anti-angiogenic properties. EGCG has also been reported to have preventive effects against ischemic stroke via nuclear factor erythroid
OBJECTIVE
Recombinant tissue plasminogen activator (rt-PA) is a safe and effective treatment for acute brain ischemia stroke, albeit with a narrow therapeutic window. We aimed to assess the effect of epigallocatechin gallate (EGCG) in extending the rt-PA treatment window in this clinical trial among
We evaluated the efficacy of epigallocatechin gallate (EGCG) for improving function in rats with transient middle cerebral artery occlusion (MCAO). Three procedures underwent for each groups; MCAO and EGCG treatment, MCAO without treatment (MCAO control), and sham operation. Function was evaluated
BACKGROUND
Ischemic stroke is the leading cause of death and disability worldwide. To date, recombinant tissue plasminogen activator (rt-PA) remains the only safe and effective pharmaceutical treatment for brain ischemia, but delayed rt-PA administration leads to hyperperfusion, which severely
BACKGROUND
Aspirin resistance appears to be an important prognostic factor in patients with coronary artery disease, yet there is no standardized method to measure it and limited data on its correlation to clinical outcomes.
METHODS
In a prospective study we followed 103 patients (mean age 64 years)
Stroke is the second leading cause of death among adults worldwide. (-)-Epigallocatechin-3-gallate (EGCG) has been demonstrated to exhibit neuroprotective functions in cerebral ischemia/reperfusion injury. However, the underlying mechanisms in this process and its contribution to the protection
METHODS
Vasopressor therapy is required in septic shock to maintain tissue perfusion in the face of hypotension. Unfortunately, there are significant side effects of current vasopressors, and newer agents need to be developed. We recently discovered that ethyl gallate, a nonflavonoid phenolic
This study examined the neuroprotective effects and possible hepatotoxicity of (-)-epigallocatechin gallate (EGCG) in a rat model of transient focal cerebral ischemia. Male Sprague-Dawley rats (265-295 g) were treated with either 50 mg kg(-1) of EGCG or saline, i.p., immediately post-ischemia and
There is a current interest in dietary compounds, such as green tea polyphenols, that can favor protection against a variety of brain disorders, including Alzheimer's disease, ischemia, and stroke. The objective of the present study was to investigate the effects of (-)-epicatechin-3-gallate (ECG),
Melatonin (N-acetyl-5-methoxytryptamine) is a hormone derived from the pineal gland that has a wide range of clinical applications. While melatonin was originally assessed as a hormone specializing in regulation of the normal circadian rhythm in mammals, it now has been shown to be an effective free
Buyang Huanwu Decoction (BYHWD) is a well-known traditional Chinese medicine prescription which is used to treat ischaemic stroke and stroke-induced disabilities. However, the exact mechanism underlying BYHWD's amelioration of ischaemic stroke and its effective constituents remain unclear. The
(-)-Epigallocatechin-3-gallate (EGCG), the principal constituent of green tea, protects neurons from toxic insults by suppressing the microglial secretion of neurotoxic inflammatory mediators. Voltage-gated proton channels are expressed in microglia, and are required for NADPH oxidase-dependent
BACKGROUND
Green tea catechins possess potent antioxidative properties and protect against various oxidative diseases. Malignant stroke-prone spontaneously hypertensive rats (M-SHRSP) develop severe hypertension and spontaneous stroke at early ages. We previously reported that ingestion of green tea