8 rezultātiem
The angiosperm family Asteraceae is characterized by composite inflorescences, which are highly organized structures consisting of different types of flowers. In order to approach the control of floral organ differentiation in Asteraceae at molecular level, we are studying regulation of flavonoid
In the ornamental cut flower plant Gerbera hybrida the spatial distribution of regulatory molecules characteristic of differentiation of the composite inflorescence is visualized as the various patterns of anthocyanin pigmentation of different varieties. In order to identify genes that the plant can
We are approaching corolla differentiation in Compositae by studying the regulation of flavonoid pathway genes during inflorescence development in gerbera. We have cloned a dfr cDNA from a ray floret corolla cDNA library of Gerbera hybrida var. Regina by a PCR technique based on homologies found in
In this study, the effect of gamma irradiation in inducing resistance/tolerance towards powdery mildew disease was investigated in Gerbera jamesonii cv. 'Harley'. In vitro shoot cultures were established through capitulum explants on Murashige and Skoog medium supplemented with 22.2 µM
Leaf senescence is often caused by water deficit and the chimeric gene P(SAG12)-IPT is an auto-regulated gene delaying leaf senescence. Using in vitro leaf discs culture system, the changes of contents of chlorophylls, carotenoids, soluble protein and thiobarbituric acid reactive substance (TBARS)
Petal pigmentation is the most important aspect in natural flower coloration. In the present study, the inhibition of petal pigmentation by exogenous ammonium was investigated. Ray floret petals detached from inflorescences of Gerbera hybrida (Shenzhen No. 5) were cultured in vitro on media supplied
Gerbera (Gerbera hybrida) is an economically important ornamental species and a model plant of the Asteraceae family for flower development and secondary metabolism. Gerberin and parasorboside, two bitter tasting glucosidic lactones, are produced in high amounts in nearly all gerbera tissues.
CONCLUSIONS
Identification of distinct allelic versions for dihydroflavonol 4-reductase in gerbera cultivars reveals that gerbera DFR enzymes have strong substrate preference in vivo that is not reflected to the activity in vitro. Flavonoids in the model ornamental plant Gerbera hybrida consist of