Lappuse 1 no 1082 rezultātiem
Hydrogen sulfide (H(2)S) is described as a mediator of diverse biological effects, and is known to produce irritation and injury in the lung following inhalation. Recently, H(2)S has been found to cause contraction in the rat urinary bladder via a neurogenic mechanism. Here, we studied whether
Exposure to ozone has been associated with airway inflammation, oxidative stress, and bronchial hyperresponsiveness. The goal of this study was to examine whether these adverse effects of ozone could be prevented or reversed by hydrogen sulfide (H2S) as a reducing agent. The H2S donor sodium (NaHS)
Hydrogen sulfide (H2S) is one of the main pollutants in the atmosphere, which is a serious threat to human health. The decomposition of sulfur-containing organics in chicken houses could produce a large amount of H2S, thereby damaging poultry health. In this study, one-day-old
Hydrogen sulfide (H2 S), a toxic volcanic gas, functions as a gaseous physiological and pathophysiological molecule. Recently we have shown that H2 S elicits acute pain through the activation of transient receptor potential ankyrin 1 (TRPA1), which is expressed mainly in primary nociceptive neurons.
OBJECTIVE
Gastrointestinal damage caused by nonsteroidal anti-inflammatory drugs (NSAIDs) remains a significant clinical problem. Hydrogen makes an important contribution to mucosal defense, and NSAIDs can suppress its synthesis. In this study, we evaluated the gastrointestinal safety and
BACKGROUND
Lipoic acid (LA) was shown to possess anti-inflammatory properties. In this study, we present evidence supporting the hypothesis that the anti-inflammatory properties of LA are associated with the formation of hydrogen sulfide (H2S).
METHODS
The study was conducted on male albino Swiss
Hydrogen sulfide (H2S) is a novel gaseous mediator produced by cystathionine-beta-synthase and cystathionine-gamma-lyase in the cardiovascular system, including the heart. Using a rat model of regional myocardial ischemia/reperfusion, we investigated the effects of an H2S donor (sodium hydrogen
We recently demonstrated that preconditioning with an exogenous hydrogen sulfide donor (NaHS-PC) 24 h before ischemia and reperfusion (I/R) causes postcapillary venules to shift to an anti-inflammatory phenotype in C57BL/6J wild-type (WT) mice such that these vessels fail to support increases in
Hydrogen sulfide (H2S) has been shown to protect against oxidative stress injury and inflammation in various high glucose-induced insult models. However, it remains unknown whether H2S protects human retinal pigment epithelial cells (RPE cells) from high glucose-induced damage.
Excessive hydrogen sulfide (H2S) affects poultry health. Exposure to air pollution induces inflammation, oxidative stress, energy metabolism dysfunction and adverse health effects. However, few detailed studies have been conducted on the molecular mechanisms of H2S-induced injury in poultry. To
The objectives of this study were to determine the role of calcium-activated, small (SK), intermediate (IK), and large (BK) conductance potassium channels in initiating the development of an anti-inflammatory phenotype elicited by preconditioning with an exogenous hydrogen sulfide (H(2)S) donor,
We previously demonstrated that hydrogen sulfide (H2S) protected neonatal rat medulla oblongata from prenatal cigarette smoke exposure (CSE) via anti-apoptotic effect. The present work further investigated the involvement of anti-oxidative and anti-inflammatory effects of H2S in the protection.
Hydrogen sulfide is an endogenous inflammatory mediator produced by the activity of cystathionine γ-lyase (CSE) in macrophages. The objective of this study was to explore the mechanism by which hydrogen sulfide acts as an inflammatory mediator in lipopolysaccharide- (LPS-) induced macrophages. In
We have investigated the effects of slow (GYY4137) and rapid (NaHS) hydrogen sulfide (H2S) releasing donors in lipopolysaccharide (LPS)-induced airway inflammation in mice. LPS (0.1 mg/ml) in 60 μl PBS was administered by the intranasal (i.n.) route and control group received vehicle, whereas the
Objective To explore the effect of hydrogen sulfide on inflammatory factors and energy metabolism of mitochondria after limbs reperfusion injury in rats. Methods Sixty rats were divided into three groups:sham operation group,control group(ischemia-reperfusion injury + saline group),and experimental