15 rezultātiem
Rhizoctonia bataticola produced oxalic acid in vitro and in vivo during pathogenesis of patato tuber. Polygalacturonase (PG) was also detected in culture filtrates of the rot-causing organism. Levels of maceration and cell death in tuber tissue were higher when a mixture of oxalic acid and PG was
In this paper, retrograded potato starches treated by oxalic, hydrochloric and citric acids and/with amylase respectively, as seed crystals, are added into maize starch paste to increase maize starch retrogradation rate. The results show that addition of seed accelerates maize starch retrogradation
The complexity of plant-pathogen interactions makes their dissection a challenging task for metabolomics studies. Here we are reporting on an integrated metabolomics networking approach combining gas chromatography/mass spectrometry (GC/MS) with Fourier transform ion cyclotron resonance/mass
Oxalic acid (as oxalate) was detected in four tubers commonly used for food in Nigeria-Dioscorea rotundata (White yam), Solanum tuberosum (Irish potato), Ipomoea batatas (Sweet potato), and Manihot esculenta (cassava). Whereas healthy I. batata had the highest oxalic acid content, healthy M.
Dollar spot is caused by the fungus Clarireedia jacksonii and is the most common disease of golf course turfgrass in temperate climates. Oxalic acid (OA) is an important pathogenicity factor in other fungal plant pathogens, such as the dicot pathogen Sclerotinia sclerotiorum, but its
BACKGROUND
Organic acids from plant food have been shown to play an important role in the prevention of chronic diseases (osteoporosis, obesity), inherent to western diets, but little is known about their bioavailability in the small intestine, information that needs to be determined in order to
Purple sweet potatoes (PSP) have been used as a natural food colorant with high acylated anthocyanins concentrations. Commercially extracting pigments from PSP can be challenging due to firm texture and high polyphenol oxidase (PPO) content. These studies evaluated hot water immersions (30, 50, 70,
Two novel glycolipids, emmyguyacin A (1a) and emmyguyacin B (1b), were isolated at concentrations of 1.51 g/L from a potato dextrose agar fermentation of a sterile fungus species. The compounds inhibit replication of influenza A virus (A/X31) in MDCK cells by inhibiting the pH-dependent
Sweet potato (Ipomoea batatas L.), typically cultivated in temperate climates under low inputs, is one of the most important crops worldwide. Abscisic acid (ABA) is an important plant stress-induced phytohormone. Hitherto, few works analyzed the ABA function in sweet potato tissue growth. Very
Ramie (Boehmeria nivea (L.) Gaud) anthracnose is regarded as one of the most widely spread and devastating diseases of ramie. This disease is most severe during warm and humid conditions. In China, ramie anthracnose is found in approximately 10,000 ha, with yield losses averaging 20% and ranging as
The ascomycete plant-pathogenic fungus Botrytis cinerea infects more than 1,400 plant species worldwide. Stimulatory effects of sublethal doses of fungicides on plant pathogens are of close relevance to disease management. In the present study, stimulatory effects of carbendazim on the virulence of
Spontaneously-occurring hypovirulence in the tan sclerotial isolate S10 of Sclerotinia sclerotiorum from sunflower in Canada was characterized and compared to another hypovirulent isolate Ep-1PN of S. sclerotiorum from eggplant in China. Hypovirulent isolates derived from S10 were purified by single
OBJECTIVE
To find possible approaches to utilize the mechanism of oxalate degradation by Coniothyrium minitans (Cm) in controlling the plant pathogen Sclerotinia sclerotiorum (Ss).
RESULTS
Differences in oxalate degradation by different Cm strains and effects of the initial oxalate concentration,
Biological and physiological characteristics of Neotyphodium gansuense were compared with Neotyphodium coenophialum and Epichloë festucae at a range of temperatures and pH values, and on carbon and nitrogen amended media. N. gansuense was able to grow at 10-30 degrees C, but not at 5 degrees C, and
Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani