Lappuse 1 no 45 rezultātiem
Plants are frequently subjected to different kinds of stress, such as salinity and, like other organisms, they have evolved strategies for preventing and repairing cellular damage caused by salt stress. Glycine max L. plants were subjected to different NaCl concentrations (0-200 mM) for 10 days.
Heme oxygenase converts heme into biliverdin, CO, and free iron. In plants, as well as in cyanobacteria, heme oxygenase plays a particular role in the biosynthesis of photoreceptive pigments, such as phytochromobilins and phycobilins, supplying biliverdin IX(alpha) as a direct synthetic resource. In
A combination of limited tryptic proteolysis, reverse phasehigh performance liquid chromatography, Edman degradative sequencing, amino acid analysis, and fast-atom bombardment mass-spectrometry was used to remove and identify the first 14 to 18 N-terminal amino acid residues of the large subunit of
The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase was measured in extracts of leaves collected before dawn (predawn activity, pa) and at midday (midday activity, ma). Twenty-three of the 37 species examined showed a pa/ma ratio (=0.75, while only Capsicum frutescens, Cucumis sativa,
Heme oxygenase (HO, EC 1.14.99.3) catalyzes the oxidative conversion of heme to biliverdin IXalpha with the concomitant release of carbon monoxide and iron. Recently, HO has been involved in the protection against oxidative stress in plants. The fact that nitric oxide (NO), an endogenous signaling
In some soybean (Glycine max (L.) Merr.) cultivars, fruit removal does not delay the apparent loss of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activity and abundance or the decline in photosynthesis. Analysis of leaf extracts from defruited plants indicated a
(3Z)-Alkenals, such as (3Z)-hexenal and (3Z)-nonenal, are produced from polyunsaturated fatty acids via lipoxygenase and hydroperoxide lyase catalysis, but in soybeans (Glycine max L.) (3Z)-alkenals have a fleeting existence. In this study it was shown that soybean seeds possess two pathways that
The half-saturation constants for binding of the bivalent cations (Mg2+, Ni2+, Co2+, Fe2+ and Mn2+) to ribulose bisphosphate carboxylase/oxygenase from Glycine max and Rhodospirillum rubrum were measured. The values obtained were dependent on the enzyme and the cation present, but were the same for
It is desirable that the expression of transgenes in genetically modified crops is restricted to the tissues requiring the encoded activity. To this end, we have studied the ability of the heterologous ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small-subunit (SSU) gene promoters,
In this work, the whole aqueous extracts of soybean flour and oat flour have been used as valuable alternatives to purified oxygenase enzymes for the preparation of oxylipins derived from (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoic acid (EPA). The lipoxygenase activity in the aqueous extracts of soybean
The abundances of ribulose-1,5-bisphosphate carboxylate/oxygenase (Rubisco) and ribulose-5-phosphate (Ru5P) kinase in field-grown soybean (Glycine max L. Merr.) leaves were quantified by a Western blot technique and related to changes in chlorophyll and photosynthetic capacity during senescence.
Purified spinach (Spinacea oleracea L.) and barley (Hordeum vulgare L.) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase supported 50 to 100% activation of substrate-bound Rubisco from spinach, barley, wheat (Triticum aestivum L.), soybean (Glycine max L.), pea (Pisum sativum L.),
Low phosphate nutrition results in increased chlorophyll fluorescence, reduced photosynthetic rate, accumulation of starch and sucrose in leaves, and low crop yields. This study investigated physiological responses of soybean (Glycine max [L.] Merr.) leaves to low inorganic phosphate (Pi)
The effects of phosphorus nutrition on various aspects of photosynthetic metabolism have been examined for soybean plants (Glycine max) grown in growth chambers. Orthophosphate was supplied at two levels in 0.5-strength Hoagland's solution. At the end of the 19-d growth period, plants grown at 10 μM
Ion-specific stress effects of Na(+) and Cl(-) on photosynthesis of seedlings of two soybean (Glycine max) cultivars (the salt-tolerant 'Lee68' and the salt-sensitive 'N23674') were studied and compared under isoosmotic (-0.53 MPa) solutions [PEG-6000, NaCl, Na(+) (without Cl(-)) and Cl(-) (without