Lappuse 1 no 38 rezultātiem
It is now well established that sphingoid Long Chain Bases (LCBs) are crucial mediators of programmed cell death. In plants, the mycotoxin fumonisin B1 (FB1) produced by the necrotrophic fungus Fusarium moniliforme disrupts the sphingolipid biosynthesis pathway by inhibiting the ceramide synthase
New activity-based probes are essential for expanding studies on the hundreds of serine and cysteine proteases encoded by the genome of Arabidopsis thaliana. To monitor protease activities in plant extracts, we generated biotinylated peptides containing a beta-lactone reactive group. These probes
Phytochelatin (PC) synthases are gamma-glutamylcysteine (gamma-Glu-Cys) dipeptidyl transpeptidases that catalyze the synthesis of heavy metal-binding PCs, (gamma-Glu-Cys)nGly polymers, from glutathione (GSH) and/or shorter chain PCs. Here it is shown through investigations of the enzyme from
UNASSIGNED
43 HbPLCPs representing nine subfamilies or 20 orthologous groups were found in rubber, where paralogs were resulted from the recent WGD and local duplication. Several senescence-associated genes were also identified. Papain-like cysteine proteases (PLCPs) comprise a large family of
Papain-like cysteine proteases (PLCPs) are a class of proteolytic enzymes involved in many plant processes. Compared with the extensive research in Arabidopsis thaliana, little is known in castor bean (Ricinus communis) and physic nut (Jatropha curcas), two Euphorbiaceous plants without any recent
Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing
XCP1 is a xylem-specific papain-like cysteine peptidase in Arabidopsis. To determine whether XCP1 could be involved in tracheary element autolysis, promoter activity and localization of XCP1 were investigated using XCP1 promoter-beta-glucuronidase fusions and immunofluorescence confocal microscopy.
Both tracheary elements and fiber cells undergo programmed cell death (PCD) during xylem development. In this study we investigated the role of papain-like cysteine protease CEP1 in PCD in the xylem of Arabidopsis. CEP1 was located in the cell wall of xylem cells, and CEP1 expression levels in
The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by
Senescence is the final stage of plant development. Although expression of most of the genes is suppressed during senescence, a set of genes referred as senescence-associated genes (SAGs) is induced. Arabidopsis thaliana SAG12 (AtSAG12) is one such gene that has been mostly studied for its strict
We obtained two cDNA clones encoding corn seed cysteine proteinases (CCP1 and CCP2). Sequence analysis showed that CCP1 consists of 371 amino acid residues, in a prepro-protein form, with two unique short insertions in the mature protein region that are not found in papain or other common CPs. CCP2
Plants mount defense responses during pathogen attacks, and robust host defense suppression by pathogen effector proteins is essential for infection success. 4E02 is an effector of the sugar beet cyst nematode Heterodera schachtii. Arabidopsis thaliana lines expressing the effector-coding sequence
Tapetal programmed cell death (PCD) is essential in pollen grain development, and cysteine proteases are ubiquitous enzymes participating in plant PCD. Although the major papain-like cysteine proteases (PLCPs) have been investigated, the exact functions of many PLCPs are still poorly understood in
Using a variety of fold-recognition methods, a novel eukaryotic cysteine proteinase (ECEPE) family has been identified. This family encompasses sequences from an uncharacterized KOG4621, including the Arabidopsis thaliana guanylyl cyclase-related protein AtGC1. ECEPE proteins are predicted to
The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown. Here we show that a mutated splice site causes severe truncations of the AtCathB1