Lappuse 1 no 39 rezultātiem
An acireductone dioxygenase (ARD) gene of potatoes was isolated from the expressed sequence tags (ESTs) of potato post-suberization cDNA libraries. The highest expression levels of the StARD gene and the protein appeared 36 h after suberization. An approximate 9-fold increase in ARD activity was
The type III secretion system (T3SS) of Pseudomonas aeruginosa is a key virulence determinant whose expression is induced by polyamine signals from mammalian host. SpuD and SpuE were postulated to be spermidine-preferential binding proteins, which regulate the polyamine content in this bacterial
The effects of exogenous polyamines and growth regulators on plating efficiency of greenhouse-grown sweet potato (Ipomoea batatas Lam.) petiole protoplasts after six days were analyzed using a central composite test design. The medium components screened were 1-naphthaleneacetic acid (NAA),
Growth potential of potato (Solanum tuberosum L.) plants is influenced by seed-tuber age. After 24 days of growth, single-eye seedcores from 7-month-old seed-tubers produced 64% more foliar dry matter than those from 19-month-old seed-tubers, reflecting a higher growth rate. This study was initiated
Effects of polyamine and metal ions on the new type of acid phosphatase purified from potato (Solanum tuberosum L. Irish Cobbler) tubers were analyzed. The enzyme belongs to nonspecific acid phosphatase family (EC 3.1.3.2), which hydrolyzes various phosphorylated substrates. The enzyme hydrolyzed
The polyamines putrescine, spermidine, and spermine and their biosynthetic enzymes arginine decarboxylase, ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase are present in all parts of dormant potato (Solanum tuberosum L.) tubers. They are equally distributed among the buds of apical
Four related phenolic amides previously undescribed from the species were revealed during metabolic profiling of potato (Solanum tuberosum) tubers. N(1),N(12)-Bis(dihydrocaffeoyl)spermine (kukoamine A) and N(1),N(8)-bis(dihydrocaffeoyl)spermidine were positively identified by comparison with
S-adenosylmethionine decarboxylase (SAMDC) is involved in the biosynthesis of the polyamines, spermidine and spermine. Recently, we reported the isolation of a putative cDNA clone of the SAMDC clone of potato (Plant Mol Biol 20; 641-651). In order to confirm that the potato genes does encode SAMDC,
The effect of the polyamine spermidine on the growth of crown gall tumors was determined using the potato disc bioassay. Addition of lmM spermidine resulted in a 30-50% increase in tumor growth. The spermidine effect was found to be biphasic, with lmM being optimal. Closely related polyamines
The mechanisms regulating, and modulating potato wound-healing processes are of great importance in reducing tuber infections, reducing shrinkage and maintaining quality and nutritional value for growers and consumers. Wound-induced changes in tuber polyamine metabolism have been linked to the
Plant mitochondria from both potato and mung bean incorporated radioactivity into acid insoluble material when incubated with labelled polyamines (spermine, spermidine and putrescine). Extensive washing of mitochondrial precipitates with trichloroacetic acid and the excess of cold polyamine failed
S-Adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) is a key enzyme in the biosynthesis of the polyamines spermidine and spermine from putrescine and its activity is rate limiting in this pathway. Transgenic potato (Solanum tuberosum L. cv. Desiree) plants containing both sense and antisense
Spermidine synthase (SPDS) catalyses the formation of spermidine, which is an essential polyamine and widespread in living organisms. Spermidine is formed from putrescine by transfer of an aminopropyl group from decarboxylated S-adenosylmethionine. Spermidine is also a precursor to further
Methionine and cysteine, two amino acids containing reduced sulfur, are not only an important substrate of protein biosynthesis but are also precursors of various other metabolites such as glutathione, phytochelatines, S-adenosylmethionine, ethylene, polyamines, biotin, and are involved as methyl
Polyamines, oxidized by serum amine oxidase, yield aminoaldehydes and hydrogen peroxide. Acrolein may be formed from the aminoaldehydes by a spontaneous beta-elimination process. These oxidation products "oxidized polyamines" inhibit bacterial growth and exhibit anticancer activity. The