Lappuse 1 no 1050 rezultātiem
As soon as the natural polyamines (PAs), putrescine (Put), spermidine (Spd) and spermine (Spm), were recognized as ubiquitous constituents of eukaryotic cells, their involvement in growth-related processes attracted particular interest. The high activities of ornithine decarboxylase (ODC) and
Epibrassinolide (EBR) is a biologically active compound of the brassinosteroids, steroid-derived plant growth regulator family. Generally, brassinosteroids are known for their cell expansion and cell division-promoting roles. Recently, EBR was shown as a potential apoptotic inducer in various cancer
The aim of this study was to expand our knowledge about anticancer activity of some polyamine derivatives with quinoline or chromane as terminal moieties. Tested compounds were evaluated in vitro towards metastatic human prostate adenocarcinoma (PC3), human carcinoma (DU145) and mammary gland
Berberine is a natural isoquinoline alkaloid with significant antitumor activity against many types of cancer cells, including ovarian tumors. This study investigated the molecular mechanisms by which berberine differently affects cell growth of cisplatin (cDDP)-sensitive and -resistant and
Chemoprevention is the long-term use of different chemical agents, both synthetic and natural, to prevent or delay the onset of disease. Since colorectal cancer has a significant environmental component, it is an ideal disease in which to evaluate the potential benefits of chemopreventive agents.
alpha-Difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, inhibited B16 melanoma-induced angiogenesis in chick embryo chorioallantoic membrane and subsequently the growth of the tumor on the chorioallantoic membrane. These inhibitions were reversed by exogenous
The polyamines transport system (PTS) is usually enhanced in cancer cells and can be exploited to deliver anticancer drugs. The spermine-conjugated epipodophyllotoxin derivative F14512 is a topoisomerase II poison that exploits the PTS to target preferentially tumor cells. F14512 has been
Polyamines are essential for tumor cell growth, and the polyamine pathway represents an attractive target for cancer treatment. Several polyamine transport proteins have been cloned and characterized in bacteria and yeast cells; however, the mechanism of polyamine entry into mammalian cells remains
Polyamine plasmid DNA (pDNA) hydrogels have been synthesized by an original approach which conjugates pDNA condensation by polyamines and cross-linking reaction with ethylene glycol diglycidyl ether. In an attempt to design more sophisticated vectors with enhanced transfection efficiency and
Geraniol and other monoterpenes found in essential oils of fruits and herbs have been suggested to represent a new class of agents for cancer chemoprevention. As a first step in clarifying the mode of action of geraniol on colon carcinogenesis, we studied its effects on the growth of a human colon
The expression patterns of cytosolic and nuclear polyamine acetyltransferases were studied in normal and neoplastic growth processesin vivo andin vitro to evidentiate the roles played by these enzymes in cell proliferation. In regenerating liver, cytosolic spermidine/spermine N(1)-acetyltransferase
BACKGROUND
Anandamide (AEA) is an endogenous agonist for cannabinoid receptor CB1-R and seems to be involved in the control of cancer growth. Polyamines are compounds that play an important role in cell proliferation and differentiation. Our aim was to investigate the effect of AEA on the polyamine
Differentiation inducers act through polyamine-dependent and independent pathways. Sodium butyrate (NaB) inhibits proliferation and induces terminal differentiation in human and murine cancer cell lines. An effect of this agent on polyamine biosynthesis has not been demonstrated previously. In the
Colorectal cancer is one of a number of cancers that may be amenable to prevention. The NSAIDs (non-steroidal anti-inflammatory drugs) have been shown to be effective chemopreventative agents in humans, but their mechanism of action is not clear. The polyamines are cellular polycations that are
Polyamine biosynthesis inhibition is being studied intensively as a new approach to cancer chemotherapy. In order to utilize appropriately compounds that deplete intracellular levels of polyamines, the effects of polyamines depletion on tumor and normal cell growth and the interaction of these