Lappuse 1 no 337 rezultātiem
This study aimed to determine the influence of bacterial surface polysaccharides (cellulose, colanic acid, and lipopolysaccharide; LPS) on the colonization or survival of Escherichia coli O157:H7 on plants and the plant defense response. Survival of E. coli O157:H7 were evaluated on Arabidopsis
Shiga toxin-producing Escherichia coli (STEC) has been associated with illnesses and outbreaks linked to fresh vegetables, prompting a growing public health concern. Most studies regarding interactions of STEC on fresh produce focused on E. coli O157:H7. Limited information is available about
Cadmium (Cd) is a toxic metal element and the mechanism(s) underlying Cd tolerance in plants are still unclear. Increasingly more studies have been conducted on Cd binding to plant cell walls (CW) but most of them have focused on Cd fixation by CW pectin, and few studies have examined Cd binding to
Plant viral diseases cause severe economic losses in agricultural production. The development of biosource-derived antiviral agents provides an alternative strategy to efficiently control plant viral diseases. We previously reported that the exogenous application of polysaccharide peptide (PSP)
Carrageenans are a collective family of linear, sulphated galactans found in a number of commercially important species of marine red alga. These polysaccharides are known to elicit defense responses in plant and animals and possess anti-viral properties. We investigated the effect of foliar
Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated
A high-throughput method is described by which Arabidopsis thaliana stems can be screened for variation in cell wall composition after hydrolysis with Driselase or trifluoroacetic acid (TFA). Driselase, a mixture of fungal enzymes, hydrolyses cellulose (to glucose) and all the major matrix
BACKGROUND
As an Agrobacterium tumefaciens T-DNA oncogene, T-6b induces the development of tumors and the enation syndrome in vegetative tissues of transgenic plants. Most of these effects are related to increases in soluble sugar contents. To verify the potential roles of T-6b in the distribution
Solid-state CP/MAS 13C NMR spectroscopy was used to determine the effects of three different sequential extraction procedures, used to remove non-cellulosic polysaccharides, on the molecular ordering of cellulose in a cell-wall preparation containing mostly primary cell walls obtained from the
The cell-wall polysaccharides of Arabidopsis thaliana leaves have been isolated, purified, and characterized. The primary cell walls of all higher plants that have been studied contain cellulose, the three pectic polysaccharides homogalacturonan, rhamnogalacturonan I and rhamnogalacturonan II, the
The physiological and molecular mechanisms leading to the competitive interactions between phosphorus (P) and metal elements are a matter of debate. In this study, we found that P deficiency can alleviate cadmium (Cd) toxicity in Arabidopsis thaliana (Col-0). Under P deficiency (-P), less Cd was
The plant cell wall is a dynamic structure that plays important roles in growth and development and in the interactions of plants with their environment and other organisms. We have used monoclonal antibodies that recognize different carbohydrate epitopes present in plant cell-wall polysaccharides
Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall
Polysaccharides containing beta-1,4-mannosyl residues (mannans) are abundant in the lignified secondary cell walls of gymnosperms, and are also found as major seed storage polysaccharides in some plants, such as legume species. Although they have been found in a variety of angiosperm tissues, little
Pectic polysaccharides are a complex set of macromolecules of the primary cell wall matrix with distinct structural domains. The biosynthesis, organisation and function of these domains within cell wall matrices are poorly understood. An immersion immunofluorescence labelling technique was developed