Lappuse 1 no 36 rezultātiem
In addition to being the universal cellular energy source, ATP is the primary reservoir for the neuromodulator adenosine. Consequently, adenosine is produced during ATP-depleting conditions, such as epileptic seizures, during which adenosine acts as an anticonvulsant to terminate seizure activity
Poly(ADP-ribose) is found to be involved in many physiological or pathological processes. It is mainly modulated by poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG). Either PARP or PARG is associated with the neuronal death in a variety of neurodegenerative diseases.
BACKGROUND
The CD38/cyclic ADP-ribose (cADPR) pathway plays a role in various central nervous system diseases and in morphine tolerance, but its role in local anesthetic intoxication is unknown. The aim of this study was to determine the role of the CD38/cADPR pathway in ropivacaine-induced
Bok (Bcl-2-related ovarian killer) is a Bcl-2 family member that, because of its predicted structural homology to Bax and Bak, has been proposed to be a pro-apoptotic protein. In this study, we demonstrate that Bok is highly expressed in neurons of the mouse brain but that bok was not required for
Oral supplementation of 10 mmol/kg/day of D-ribose to a patient with an inherited deficit of adenylosuccinase, severe psychomotor retardation, and epilepsy caused a marked increase in plasma concentration and urinary excretion of urate, while minor changes in succinylpurine levels were observed.
Deficiency of adenylosuccinate lyase (ADSL) (OMIM 103050) is an autosomal recessive disorder of the purine de novo synthesis pathway and purine nucleotide cycle, diagnosed so far in approximately 50 patients. The clinical presentation is characterized by severe neurological involvement including
Several processes by which astrocytes protect neurons during ischemia are now well established. However, less is known about how neurons themselves may influence these processes. Neurons release zinc (Zn2+) from presynaptic terminals during ischemia, seizure, head trauma, and hypoglycemia, and
Inhibition of poly(ADP-ribose) polymerase (PARP) has been proposed to have a neuroprotective effect on hippocampal neurons in animal models of epilepsy. However, the mechanisms of PARP-mediated epileptic neuron apoptosis in vitro are still not thoroughly understood. Therefore, we investigated the
A six-year-old boy presented with a history of seizures, progressive neurologic deterioration, and proteinuria. Physical examination revealed mildly coarse facies, failure to thrive, generalized hypotonia with muscle wasting, and optic atrophy; there was no organomegaly. The family history suggested
To elucidate the impact of maternal seizures in the developing rat brain, pregnant Wistar rats were subjected to the pilocarpine-induced seizures and pups from different litters were studied at different ages. In the first 24 h of life, blood glucose and blood gases were analyzed. (14)C-leucine
Repeated electroconvulsive seizure (ECS), a model for electroconvulsive therapy (ECT), exerts neuroprotective and proliferative effects in the brain. This trophic action of ECS requires inhibition of apoptotic activity, in addition to activation of survival signals. c-Myc plays an important role in
3-Aminobenzamide (3-AB), an inhibitor of poly(ADP-ribose) polymerase (PARP), has been proved to have neuroprotective properties. In this study, we examined the role of 3-AB in rat hippocampal neuron death induced by seizures. Our data showed that the seizures resulted in PARP activation and
Poly(ADP-ribose) polymerase-1 (PARP1) plays a regulatory role in apoptosis, necrosis and other cellular processes after injury. Status epilepticus (SE) induces neuronal and astroglial death that show regional-specific patterns in the rat hippocampus and piriform cortex (PC). Thus, we investigated
Status epilepticus (SE)-induced neuronal death is morphologically necrotic and is initiated by excessive glutamate release, which activates postsynaptic N-methyl-D-aspartate (NMDA) receptors and triggers receptor-mediated calcium influx (excitotoxicity). This results in activation of intracellular