14 rezultātiem
As the world population grows, the demand for food increases. Although vegetable oils provide an affordable and rich source of energy, the supply of vegetable oils available for human consumption is limited by the "fuel vs food" debate. To increase the nutritional value of vegetable oil, metabolic
An approach based on an in silico analysis predicted that CYP77A4, a cytochrome P450 that so far has no identified function, might be a fatty acid-metabolizing enzyme. CYP77A4 was heterologously expressed in a Saccharomyces cerevisiae strain (WAT11) engineered for cytochrome P450 expression. Lauric
Fatty acid desaturases are enzymes that introduce double bonds into fatty acyl chains, among which stearoyl-acyl carrier protein desaturase (S-ACP-DES) was widely distributed in the plant kingdom. We cloned the cDNA coding for fab2/ssi2, an S-ACP-DES from Arabidopsis thaliana, into the vector pET30a
Previous studies have shown that several ACYL-ACYL CARRIER PROTEIN DESATURASE (AtAAD) members in Arabidopsis thaliana are responsible for oleic acid (C18:1) biosynthesis. Limited research has been conducted on another member, AtAAD5, and its paralog BnAAD5 in the closely related and commercially
Mutants of Arabidopsis thaliana were identified by screening pedigreed M3 seed collections from EMS-treated plants for changes in fatty acid (FA) composition. The FA phenotypes of the most dramatic mutants are as follows: G30 and 1E5 (allelic) lack linolenic acid (18∶3) and are elevated in linoleic
Paeonia ostii var. lishizhenii has been approved as a woody oil crop with the outstanding characteristic of abundant α-linolenic acid (C18:3, ALA) in its seed oil. The stearoyl-ACP desaturase gene (SAD) regulates the first key step from stearic acid (C18:0, SA) to oleic acid (C18:1, OA) in the ALA
The acyl-[acyl carrier protein]:sn-1-glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyzes the first step of glycerolipid assembly within the stroma of the chloroplast. In the present study, the sunflower (Helianthus annuus, L.) stromal GPAT was cloned, sequenced and characterized. We
ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane via posttranslational lipid modifications. The relationships between ROP activation status and membrane localization has not been established. Here, we
UNASSIGNED
We herein demonstrated two of the Arabidopsis acyl-CoA-binding proteins (ACBPs), AtACBP4 and AtACBP5, both function in floral lipid metabolism and they may possibly play complementary roles in Arabidopsis microspore-to-pollen development. Histological analysis on transgenic Arabidopsis
Agrobacterium tumefaciens-derived crown galls of Arabidopsis (Arabidopsis thaliana) contain elevated levels of unsaturated fatty acids and strongly express two fatty acid desaturase genes, ω3 FATTY ACID DESATURASE3 (FAD3) and STEAROYL-ACYL CARRIER PROTEIN Δ9-DESATURASE6 (SAD6). The fad3-2 mutant
Stearoyl-acyl carrier protein desaturase-mediated conversion of stearic acid to oleic acid (18:1) is the key step that regulates the levels of unsaturated fatty acids (FAs) in cells. Our previous work with the Arabidopsis (Arabidopsis thaliana) ssi2/fab2 mutant and its suppressors demonstrated that
Nitric oxide (NO) has been implicated as a key signaling molecule involved in a wide spectrum of plant developmental and stress responses. Here, we found that NO also played important role in seed oil content and fatty acid composition. RNAi silencing Arabidopsis thaliana S-nitrosoglutathione
Parsley (Petroselinum crispum) plants and suspension-cultured cells have been used extensively for studies of non-host-resistance mechanisms in plant/pathogen interactions. We now show that treatment of cultured parsley cells with a defined peptide elicitor of fungal origin causes rapid and large
Fatty acids (FAs) play crucial rules in signal transduction and plant development, however, the regulation of FA metabolism is still poorly understood. To study the relevant regulatory network, fifty-eight FA biosynthesis genes including de novo synthases, desaturases and elongases were selected as