9 rezultātiem
NAC (NAM, ATAF1/2, and CUC2) proteins play critical roles in many plant biological processes and environmental stress. However, NAC proteins from Tamarix hispida have not been functionally characterized. Here, we studied a NAC gene from T. hispida, ThNAC13, in response to salt and osmotic stresses.
A number of N-methylproline analogues have been found to accumulate in different species of Tamarix. These include N-methyl-L-proline (MP), trans-4-hydroxy-N-methyl-L-proline (M4HP) and trans-3-hydroxy-N-methyl-L-proline (M3HP). The three compounds appeared in all species but their relative and
Root tissue is the primary site of perception for stress from soil, and is the main tissue involved in stress response. Tamarix hispida is a woody halophyte that is highly tolerant to salt and drought stress, but little information available about gene expression in roots in response to abiotic
The present study was designed to clarify the effects of salinity and water intercross stresses on the growth and physiobiochemical characteristics of Tamarix chinensis seedlings by pots culture under the artificial simulated conditions. The growth, activities of SOD, POD, and contents of MDA and
Identification of the upstream regulators of a gene is important to characterize the transcriptional pathway and the function of the gene. Previously, we found that a zinc finger protein (ThZFP1) is involved in abiotic stress tolerance of Tamarix hispida. In the present study, we further
Zinc finger proteins (ZFPs) are a large family that play important roles in various biological processes, such as signal transduction, RNA binding, morphogenesis, transcriptional regulation, abiotic or biotic stress response. However, the functions of ZFPs involved in abiotic stress are largely not
Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress
Plant specific NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) play important roles in response to abiotic stress. In this study, we identified and characterized a NAC protein, ThNAC7, from Tamarix hispida. ThNAC7 is a nuclear localized protein and has transcriptional
Ethylene-Responsive Factors (ERFs) are plant-specific transcription factors (TFs) involved in multiple biological processes, especially in abiotic stress tolerance. However, the ERFs from woody halophytes that are involved in salt stress have been little studied. In the present investigation, we