15 rezultātiem
Trillium tschonoskii Maxim (TTM), a traditional Chinese medicine, has been demonstrated to have a potent anti-tumor effect. Recently, polyphyllin VI (PPVI), a main saponin isolated from TTM, was reported by us to significantly suppress the proliferation of non-small cell lung cancer (NSCLC)
Combating with multidrug resistance (MDR) is a major part of hepatocellular carcinoma (HCC) chemotherapy. Steroidal saponin from Trillium tschonoskii (TTS) could be a potential weapon. We found TTS could reverse the MDR in HCC cells and significantly enhance chemosensitization. TTS inhibited HepG2
BACKGROUND
Saponins of many herbs are known to possess anti-cancer effect.
OBJECTIVE
The present study aimed to investigate the growth inhibitory effect of Trillium tschonoskii steroidal saponins in a mouse model of colitis-associated colorectal cancer and a human colorectal cancer cell line HT-29,
BACKGROUND
Steroidal saponins in Trillium tschonoskii Maxim have many biological activities, including immunological regulation and anti-tumour. Comprehensive ingredient identification is critical for understanding its pharmacological mechanism and establishing quality control protocols. However, it
A steroidal saponin named pennogenin 3-O-α-L-rhamnopyranosyl-(1→2) [α-L-rhamnopyranosyl-(1→4)]-β-D-glucoyranoside(TTB2) has been successfully separated from the n-BuOH extracts of Trillium tschonoskii Maxim and is able to induce cytotoxicity to some types cancer cells. The present study aimed to
Trillin is a constituent of total Trillium Tschonoskii Maxim (TTM), which is extracted from TTM and displayed anti-tumor effect in many tumor cell lines. However, the anti-tumor mechanism of trillin is still unclear. This study demonstrated that trillin could dramatically inhibit hepatoma carcinoma
The steroidal saponin TTB2 can be isolated from the n-BuOH extracts of Trillium tschonoskii Maxim. The aim of the present study was to observe whether this saponin exerted any cytotoxic effects on malignant sarcoma cells, and to further investigate the possible underlying molecular mechanisms. The
Metastasis is the main cause of mortality of patients with cancer-related disease. Targeting the process of metastasis has been proposed as a potential strategy in cancer treatment. Trillium tschonoskii Maxim., a traditional Chinese medicine, is used for the treatment of numerous diseases, including
Trillium tschonoskii Maxim, a perennial herb of the Trilliaceae, has been widely used to treat inflammation, hypertension and cancer. We investigated Paris saponin VII's (PS VII), isolated from Trillium tschonoskii Maxim, function in mediating autophagy and apoptosis in NSCLC Trillium tschonoskii Maxim. has been used to treat several diseases including cancers in folk medicine. However, the mechanisms responsible for T. tschonoskii extract-induced apoptosis are not clear. This study was mainly undertaken to identify the major biochemical changes in a lung cancer cell
The development of a multidrug-resistant (MDR) phenotype is a main obstacle to the successful treatment of breast cancer. Saponins of several herbs are considered as promising candidates for drug resistance treatment. We extracted Paris saponin VII (PS VII) from Trillium tschonoskii Dysregulation of the Ras signaling pathway plays a key role in the progression of colorectal cancer. When bound to GTP, Ras is activated and stimulates several downstream effectors' pathways, including the Raf/MEK/ERK kinase cascade, the PI3-kinase/AKT/mTor pathway, and the Ral GTPase pathway.
Metastasis is the main cause of death in lung cancer. Targeting the process of metastasis is a strategy to lung cancer treatment. Trillium tschonoskii Maxim., a traditional Chinese medicine, has been used for treatment of many diseases, including cancer. This study aims to determine the
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Our previous studies have proven that Trillium tschonoskii Maxim. (TTM), a traditional Chinese medicine, possesses potent anti-tumor effect. However, the detailed components and molecular mechanism of TTM in
The aim of this study was to characterize the demographic characteristics and investigate the cost of a publicly funded system, the Ontario Trillium Drug Program (TDP), for an oncology patient population.We ascertained all TDP claims between April 1997 and