14 rezultātiem
Seeds of the tung tree (Vernicia fordii) produce large quantities of triacylglycerols (TAGs) containing approximately 80% eleostearic acid, an unusual conjugated fatty acid. We present a comparative analysis of the genetic, functional, and cellular properties of tung type 1 and type 2 diacylglycerol
The tung tree (Vernicia fordii) is one of only a few plant species that produces high oil-yielding seeds rich in α-eleostearic acid (α-ESA, 18:3Δ9cis, 11trans, 13trans), a conjugated trienoic fatty acid with valuable industrial and medical properties. Previous attempts have been made to engineer
One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of
The tung tree (Vernicia fordii), a non-model woody plant belonging to the Euphorbiaceae family, is a promising economic plant due to the high content of a novel high-value oil in its seeds. Many metabolic pathways are active during seed development. Oil (triacylglycerols (TAGs)) accumulates in oil
The tung tree (Vernicia fordii Hemsl.; Vf) has great potential as an industrial crop owning to its seed oil that has multiple uses. Diacylglycerol acyltransferases (DGATs) catalyze the last and most committed step of triacylglycerol (TAG) biosynthesis. In order to examine the physiological role of
BACKGROUND
Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Database search has identified at least 59 DGAT1 sequences from 48 organisms, but the expression of any DGAT1 as a full-length protein in E.
Triacylglycerols (TAG) are the major molecules of energy storage in eukaryotes. TAG are packed in subcellular structures called oil bodies or lipid droplets. Oleosins (OLE) are the major proteins in plant oil bodies. Multiple isoforms of OLE are present in plants such as tung tree (Vernicia fordii),
The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered
Expression of Delta(12)-oleic acid desaturase-related fatty acid conjugases from Calendula officinalis, Momordica charantia, and Vernicia fordii in seeds of soybean (Glycine max) or an Arabidopsis thaliana fad3/fae1 mutant was accompanied by the accumulation of the conjugated fatty acids calendic
Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of
Diacylglycerol acyltransferases (DGATs) esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA, the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the expression of any DGAT2
In order to identify novel genes encoding enzymes involved in the terminal step of triacylglycerol (TAG) formation, a database search was carried out in the genome of the unicellular photoautotrophic green alga Ostreococcus tauri. The search led to the identification of three putative type 2
In vivo and in vitro analyses of Euphorbiaceae species' triacylglycerol assembly enzymes substrate selectivity are consistent with the co-evolution of seed-specific unusual fatty acid production and suggest that many of these genes will be useful for biotechnological production of designer oils.
Recent efforts to genetically engineer plants that contain fatty acid desaturases to produce valuable fatty acids have made only modest progress. Diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step in triacylglycerol (TAG) assembly, might potentially regulate the biosynthesis of