Macedonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

Glucan binding protein and glucosyltransferase immunogens

Само регистрираните корисници можат да преведуваат статии
Пријавете се / пријавете се
Врската е зачувана во таблата со исечоци
Daniel Smith
Martin Taubman

Клучни зборови

Информации за патент

Број на патент7163682
Пополнети03/08/2004
Датум на патент01/15/2007

Апстракт

Immunogenic compositions and subunit vaccines for dental caries are described which comprise peptide subunits of glucan binding protein-B and peptide subunits of glucan binding protein-B in combination with peptide subunits of glucosyltransferase. Methods of provoking an immune response to S. mutans glucan binding protein-B or glucosyltransferase. Methods of immunizing a mammal against dental caries are also described, along with antibodies which bind particular epitopes of glucan binding protein-B or glucosyltransferase.

Тврдења

What is claimed is:

1. A composition comprising a fragment of a glucan binding protein-B (GbpB) and a biocompatible microparticle, wherein said fragment binds to a major histocompatibility complex (MHC) class II protein.

2. The composition of claim 1, wherein said fragment binds to an HLA protein.

3. The composition of claim 1, wherein said GbpB protein comprises an amino acid sequence selected from the group consisting of SEQ ID NO's: 29, 30, 31, 32, and 33.

4. The composition of claim 1, wherein said fragment comprises an amino acid sequence selected from the group consisting of SEQ ID NO's: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 41.

5. A composition comprising a GbpB polypeptide, a glucosyltransferase polypeptide and a biocompatible microparticle.

6. The composition of claim 5, wherein said GbpB polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO's: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 41.

7. The composition of claim 5, wherein said glucosyltransferase polypeptide comprises a catalytic domain selected form the group consisting of SEQ ID NO: 34, 35, 36, 37, 38, 39, and 40.

8. The composition of claim 7, wherein said domain comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 24 and 25.

9. The composition of claim 5, wherein said glucosyltransferase polypeptide comprises a glucan binding domain selected from the group consisting of SEQ ID NO: 34, 35, 36, 37, 38, 39, and 40.

10. The composition of claim 9, wherein said glucan binding domain comprises the amino acid sequence of SEQ ID NO: 23.

11. The composition of claim 5, wherein said glucosyltransferase polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 23, 24, 25, 26, 27, 28, 42, 43, 44, and 45.

12. The composition of claim 5, wherein said GbpB polypeptide comprises SEQ ID NO: 1 and said glucosyltransferase polypeptide comprises SEQ ID NO: 23.

13. The composition of claim 5, wherein said GbpB polypeptide comprises SEQ ID NO: 1 and said glucosyltransferase polypeptide comprises SEQ ID NO: 25.

14. The composition of claim 5, wherein said composition further comprises a peptidyl core matrix.

Опис

BACKGROUND OF THE INVENTION

Mutans streptococci have been implicated in the initiation of dental caries in humans. Streptococcus mutans have several virulence factors that allow the bacteria to accumulate within the dental biofilm and produce and tolerate the acids that cause dental caries. The ability of cariogenic mutans streptococci to accumulate in the dental biofilm is thought to be a consequence of the synthesis of glucans by glucosyltransferases, followed by the binding of the bacteria to these polymers via the cell-associated glucan binding proteins (Gbps). Biofilm development occurs in two distinct phases. During the first phase, bacterial surface proteins interact with host or bacterial products adsorbed on the tooth surface. In the second phase, a biofilm forms as bacteria accumulate by aggregation with the same or other species and produce an extracellular polysaccharide matrix.

Epitopes associated with these functions are thought to be primary targets for immunogenic attack, provided that the relevant sequences are located in molecular areas that can be accessible to antibody. Several mutans streptococcal proteins with glucan binding activity have been described (Russell, R. R., J. Gen. Microbiol., 112:197 201 (1979); Smith D. J. et al., Infect. Immun. 62:2545 2552 (1994); Sato, Y., et al., Infect. Immun., 65:668 675 (1997)). One of these components, glucan-binding protein-B (GbpB), has been shown to induce protective immune responses against experimental dental caries following systemic or mucosal immunization (Smith D. J. et al., Infect. Immun. 64:3069 3073 (1996) and Smith D. J. et al., Oral Microbiol. Immunol. 13:278 285(1998)). Furthermore, there is evidence that the expression of GbpB is directly related to biofilm formation (Mattos-Graner, R. O., et al., Infect. and Immun. 69(11) 6931 6941(2001)). However, use of the intact GbpB protein in a vaccine may induce immunity to irrelevant or unwanted epitopes.

SUMMARY OF THE INVENTION

The invention provides improved immunogens and vaccine compositions for inducing antibody production against Streptococcal antigens. Accordingly, the invention features a composition containing a fragment of a glucan binding protein-B (GbpB), which binds to a major histocompatibility complex (MHC) class II protein, e.g., an HLA protein selected from the group consisting of DRA, DRB1, DRB2, DQA1, DQB1, DPA1, DPB1, DMA, DMB, DOA, and DOB. The GbpB protein is preferably derived from a Streptococcus mutans strain. For example, the Streptococcal GbpB contains an amino acid sequence selected from the group consisting of SEQ ID NO's: 29, 30, 31, 32, and 33. Preferably, the GbpB protein contains the amino acid sequence of SEQ ID NO: 29 (S. mutans strain SJ32).

The fragment is greater than 6 and less than 431 residues in length. For example, the fragment is less than 400 residues in length, less than 100 residues in length, or less than 50 residues in length. Preferably, the fragment is 10 25 residues in length. The fragment contains an amino acid sequence selected from the group consisting of SEQ ID NO's: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22. Preferably, the fragment contains an amino acid sequence selected from the group consisting of SEQ ID NO's: 1 and 3.

Also within the invention is a chimeric polypeptide containing a fragment of two or more streptococcal proteins. For example, the composition contains a GbpB polypeptide and a glucosyltransferase (GTF) polypeptide. The polypeptides are covalently linked. The chimeric polypeptide contains greater than two epitopes (diepitopic polypeptide), and may contain 3, 4, 5 or more epitopes (multiepitopic polypeptide). Optionally, the polypeptide contains two or more copies of a single epitope. The GbpB polypeptide preferably contains an amino acid sequence selected from the group consisting of SEQ ID NO's: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22, and the glucosyltransferase polypeptide comprises a catalytic domain of SEQ ID NO: 34, 35, 36, 37, 38, 39, or 40. Preferably, the catalytic domain contains an amino acid sequence of SEQ ID NO: 24 or 25. Alternatively (or in addition), the glucosyltransferase polypeptide contains a glucan binding domain of SEQ ID NO: 34, 35, 36, 37, 38, 39, or 40. Preferably, the glucan binding domain comprises an amino acid sequence of SEQ ID NO: 23, and the glucosyltransferase polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 23, 24, 25, 26, 27, AND 28. For example, a diepitopic polypeptide construct includes a GbpB polypeptide containing SEQ ID NO: 1 and a glucosyltransferase polypeptide containing SEQ ID NO: 23 or a GbpB polypeptide containing SEQ ID NO: 1 and a glucosyltransferase polypeptide containing SEQ ID NO: 25. The di- or multi-epitopic constructs optionally contain a peptidyl core matrix. The matrix contains one or a plurality of lysine residues.

The compositions are used to elicit production of an antibody in a mammal. The method is carried out by administering to the mammal a composition containing a MHC class II-binding fragment of GbpB or a composition containing both a GbpB polypeptide and a glucosyltransferase polypeptide. In the latter case, the amount of an anti-GbpB antibody produced by the mammal is at least 10% greater than an amount produced by a mammal immunized with a composition comprising a GbpB peptide in the absence of a GTF peptide. Anti-GbpB titers in animals immunized with a di or multi-epitopic peptide constructs are preferably at least 20%, at least 50%, at least 75%, and at least 100% greater than titers achieved in animals immunized with a mono-epitopic peptide. Similarly, anti-GTF titers in animals immunized with a di or multi-epitopic peptide constructs are preferably at least 20%, at least 50%, at least 75%, and at least 100% greater than titers achieved in animals immunized with a mono-epitopic peptide. The immunization leads to production of mucosal immunity (IgA isotype) as well as systemic immunity (e.g., IgG isotype). Also, within the invention is a substantially pure antibody produced by any of the methods described above.

The polypeptides (including antibody molecules) within the invention are substantially pure. A polypeptide is substantially pure when it is separated from those contaminants, which accompany it in its natural state (proteins and other naturally-occurring organic molecules). In the case of an antibody preparation, the antibodies are purified from other blood components such as cells and other blood proteins. Typically, the polypeptide is substantially pure when it constitutes at least 60%, by weight, of the protein in the preparation. Preferably, the protein in the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, of the desired protein. Purity is measured by any appropriate method, e.g., column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis. Accordingly, substantially pure polypeptides include synthetic polypeptides, recombinant polypeptides derived from a eucaryote but produced in E. coli or another procaryote, or in a eucaryote other than that from which the polypeptide was originally derived.

The peptides are prepared synthetically or by recombinant DNA technology. The term peptide is used interchangeably with polypeptide in the present specification to designate a series of amino acids connected one to the other by peptide bonds between the alpha-amino and alpha-carboxy groups of adjacent amino acids. Optionally, one or more peptide bonds are replaced with an alternative type of covalent bond (a "peptide mimetic") which is less susceptible to cleavage by peptidases compared to a peptide bond. Where proteolytic degradation of the peptides following injection into the subject is a problem, replacement of a particularly sensitive peptide bond with a noncleavable peptide mimetic yields a peptide mimetic, which is more stable and thus more useful as a therapeutic. Such mimetics, and methods of incorporating them into peptides, are well known in the art. Similarly, the replacement of an L-amino acid residue is a standard way of rendering the peptide less sensitive to proteolysis. Also useful are amino-terminal blocking groups such as t-butyloxycarbonyl, acetyl, theyl, succinyl, methoxysuccinyl, suberyl, adipyl, azelayl, dansyl, benzyloxycarbonyl, fluorenylmethoxycarbonyl, methoxyazelayl, methoxyadipyl, methoxysuberyl, and 2,4,-dinitrophenyl. The polypeptides or peptides are either in their neutral (uncharged) forms or in forms which are salts, and either free of modifications such as glycosylation, side chain oxidation, or phosphorylation or containing these modifications, subject to the condition that the modification not destroy the immune stimulatory activity of the polypeptides.

Derivative peptide epitopes have an amino acid sequence, which differs from the amino acid sequence of a naturally-occurring receptor peptide. Such derivative peptides have at least 50% identity compared to a reference sequence of amino acids, e.g., a naturally-occurring glutamate receptor peptide. Preferably, a derivative is 90, 95, 98, or 99% identical to a naturally-occurring protein sequence. The derivative contains a conservative amino acid substitution. By conservative substitution is meant a replacement of an amino acid residue with another, which is biologically and/or chemically similar, e.g., one hydrophobic residue for another, or one polar residue for another. The substitutions include combinations such as Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe, Tyr. Nucleotide and amino acid comparisons described herein are carried out using the Lasergene software package (DNASTAR, Inc., Madison, Wis.). The MegAlign module used is the Clustal V method (Higgins et al., 1989, CABIOS 5(2):151 153). The parameter used is gap penalty 10, gap length penalty 10.

In addition to eliciting active immunity by immunizing a mammal with streptococcal immunogens, the method encompasses methods of conferring passive immunity. For example, antibodies produced in vitro or in vivo are purified and administered to a mammal. The antibody preparation contains antibodies, which specifically bind to streptococcal antigens such as GbpB and/or GTF. For example, the antibodies used in a passive immunization regimen were raised by immunization of a first mammal with a composition containing a purified antibody which specifically binds to an MHC class II binding fragment of GbpB or one or more of the multi-epitopic constructs described above. Following purification of the antibodies from the first animal, the antibodies are administered to a second animal. Alternatively, antibodies are produced in culture, purified, and administered to a mammal to confer passive immunity. Antibodies elicited by immunization or administered passively inhibit one or more activities, e.g., colonization, of oral Streptococci.

Other features and advantages of the invention will be apparent from the following detailed description and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a chart depicting the results of an MHC class motif-matching algorithm used to compare GbpB primary sequence against a set of DBRI alleles represented as matches versus sequence.

FIG. 2 depicts box plots of serum IgG antibody to GbpB peptide constructs QGQ and SYI. Serum IgG antibody activity was measured in ELISA against QGQ (left panel) and SYI (middle panel) peptide constructs and GbpB protein (right panel). Sham-immunized and SYI, QGQ- and GbpB-immunized groups represent the immune experience of 6 rats per group 35 days after the initial of two subcutaneous immunizations. The absorbency was measured at 405 nm.

FIG. 3 depicts box plots of serum IgG and IgA antibody to SYI in the protection experiment. IgG (left panel) and IgA (right panel) antibody activity was measured in ELISA against SYI in sera collected at the end of the protection experiment. Sham-immunized and SYI-immunized groups represent the immune experience of 13 rats per group three months after the initial of two subcutaneous immunizations. The absorbency was measured at 405 nm.

FIG. 4 depicts box plots of serum IgG and IgA antibody to GbpB in the protection experiment. IgG (left panel) and IgA (right panel) antibody activity was measured in ELISA against GbpB in sera collected at the end of the protection experiment. Sham-immunized and SYI-immunized groups represent the immune experience of 13 rats/per group three months after the initial of two subcutaneous immunizations. The absorbency was measured at 405 nm.

FIG. 5 depicts the level of infection after challenge with S. mutans. Each plot represents the number of S. mutans SJr cultivated after systematic swabbing of molar surfaces eight days and 65 days after initial infection with S. mutans SJr. Bars indicate the mean colony forming units of S. mutans SJr in sham- or SYI-immunized groups. Open and closed circles indicate levels of infection of individual rats.

FIG. 6 depicts dental caries after 78 days of infection with S. mutans SJr. The buccal, lingual, occlusal and total molar caries scores for sham and SYI-immunized groups are shown in respective panels.

FIG. 7 is a box plot showing serum IgG antibody binding to SYI peptide depicted as absorbency units at 405 nm as measured in an ELISA assay. Sera was collected on day 63.

FIG. 8 is a box plot showing serum IgG antibody binding to S. mutans GbpB depicted as absorbency units at 405 nm as measured in an ELISA assay. Sera was collected on day 63.

FIG. 9 is a box plot showing serum IgG antibody binding to GLU peptide depicted as absorbency units at 405 nm as measured in an ELISA assay. Sera was collected on day 63.

FIG. 10 is a box plot showing serum IgG antibody binding to CAT peptide depicted as absorbency units at 405 nm as measured in an ELISA assay. Sera was collected on day 63.

FIG. 11 is a box plot showing serum IgG antibody binding to S. sobrinus GTF depicted as absorbency units at 405 nm as measured in an ELISA assay. Sera was collected on day 63.

FIG. 12 is a pictorial representation of the peptide and protein antigens used for the immunization of rats in the ELISA binding assays (results of which are shown in FIGS. 7 11).

DETAILED DESCRIPTION OF THE INVENTION

Mutans streptococcus is the principle etiologic agent of the infectious disease dental caries. This oral pathogen infects the oral cavity during early childhood and normally remains associated with the host's dentition for life. The accumulation of bacteria within the dental biofilm is possible due to the effect of several virulence factors. The bacterial components associated with the accumulation phase of mutans streptococci include glucosyltransferases, their glucan products and glucan binding proteins. At least three S. mutans glucan binding proteins have been identified, GbpA, GbpB and GbpC. GbpA shares homology with the putative glucan binding domain of glucosyltransferase and the gbpA gene was found to encode a constitutively expressed secreted protein. Cell surface associated GbpC is related to the Spa family of streptococcal proteins and is only expressed during conditions of stress. GbpB is immunogenically distinct from the other glucan binding proteins expressed by S. mutans and Streptococcus sobrinus and also differs in size and purification properties.

Glucan binding protein-B is a single polypeptide chain, which is 431 432 residues in length. Analysis of the primary sequence revealed a leucine zipper domain. However, GbpB bore no sequence homology with glucan binding domains of glucosyltransferases or S. mutans glucan binding protein A. This prevented the specific targeting of GbpB domains of putative glucan binding function using subunit vaccine approaches that had been employed successfully with synthetic peptide or recombinant construct derived from GTF glucan binding domains as described in U.S. Pat. No. 5,686,075 and U.S. application Ser. No. 09/290,049, the entire contents of which are herein incorporated by reference.

The GbpB sequence bears significant homology with peptidoglycan hydrolases from other gram positive microorganisms, and comparative genomic analysis of the gbpB region suggested a functional relationship between genes involved in cell shape and cell wall maintenance. Attempts to knock out the gbpB gene indicated that expression of GbpB is essential for the organism. Immunogenic interference with GbpB function reduces the adverse effects associated with the growth of cariogenic S. mutans in the oral cavity.

Tables 5 9 include the amino acid sequence of GbpB from various strains S. mutans.

TABLE-US-00001 TABLE 5 Deduced Amino Acid Sequence of S. mutans strain SJ32 GbpB GenBank accession number AY046410 MKKRILSAVLVSGVTLSSATTLSAVKADDFDAQIASQDSKINNLTAQQQA (SEQ ID NO:29) AQAQVNTIQGQVSALQTQQAELQAENQRLEAQSATLGQQIQTLSSKIVAR NESLKQQARSAQKSNAATSYINAIINSKSVSDAINRVSAIREVVSANEKM LQQQEQDKAAVEQKQQENQAAINTVAANQETIAQNTNALNTQQAQLEAAQ LNLQAELTTAQDQKATLVAQKAAAEEAARQAAAAQAAAEAKAAAEAKALQ EQAAQAQVAANNNTQATDASDQQAAAADNTQAAQTGDSTEQSAAQAVNNS DQESTTATEAQPSASSASTAAVAANTSSANTYPAGQCTWGVKSLAPWVGN YWGNGGQWAASAAAAGYRVGSTPSAGAVAVWNDGGYGHVAYVTGVQGGQI QVQEANYAGNQSIGNYRGWFNPGSVSYIYPN

TABLE-US-00002 TABLE 6 Deduced Amino Acid Sequence of S. mutans strain 3VF4 GbpB GenBank accession number AY046411 MKKRTLSAVLVSGVTLSSATTLSAVKADDFDAQIASQDSKINNLTAQQQA (SEQ ID NO:30) AQAQVNTIQGQVSALQTQQAELQAENQRLEAQSATLGQQIQTLSSKIVAR NESLKQQARSAQKSNAATSYTNAIINSKSVSDAINRVSAIREVVSANEKM LQQQEQDKAAVEQKQQENQAAINTVAANQETIAQNTNALNTQQAQLEAAQ LNLQAELTTAQDQKATLVAQKAAAEEAARQAAAAQAAAEAKAAAEAKALQ EQAAQAQAAANNNTQATDASDQQAAAADNTQAAQTGDSTEQSAAQAVNNS DQESTTATEAQPSASSASTAAVAANTSSANTYPAGQCTWGVKSLAPWVGN YWGNGGQWAASAAAAGYRVGSTPSAGAVAVWNDGGYGHVAYVTGVQGGQI QVQEANYAGNQSIGNYRGWFNPGSVSYIYPN

TABLE-US-00003 TABLE 7 Deduced Amino Acid Sequence of S. mutans strain 15JP2 GbpB GenBank accession number AY046412 MKKRILSAVLVSGVTLSSATTLSATKADDFDAQIASQDSKINNLTAQQQA (SEQ ID NO:31) AQAQVNTIQGQVSALQTQQAELQAENQRLEAQSATLGQQIQTLSSKIVAR NESLKQQARSAQKSNAATSYINAIINSKSVSDAINRVSAIREVVSANEKM LQQQEQDKAAVEQKQQENQAAINTVAANQETIAQNTNALNTQQAQLEAAQ LNLQAELTTAQDQKATLVAQKAAAEEAARQAAAAQAAAEAKAAAEAKALQ EQAAQAQAAANNNNTQATDASDQQAAAADNTQAAQTGDSTDQSAAQAVNN SDQESTTATAAQPSASSASTAAVAANTSSANTYPAGQCTWGVKSLAPWVG NYWGNGGQWAASAAAAGYRVGSTPSAGAVAVWNDGGYGHVAYVTGVQGGQ IQVQEANYAGNQSIGNYRGWFNPGSVSYIYPN

TABLE-US-00004 TABLE 8 Deduced Amino Acid Sequence of S. mutans strain 3SN1 GbpB GenBank accession number AY046413 MKKRILSAVLVSGVTLSSATTLSAVKADDFDAQIASQDSKTNNLTAQQQA (SEQ ID NO:32) AQAQVNTIQGQVSALQTQQAELQAENQRLEAQSATLGQQIQTLSSKIVAR NESLKQQARSAQKSNAATSYINAIINSKSVSDAINRVSAIREVVSANEKM LHQQEQDKAAVEQKHQENQAAINTVAANQETIAQNTNALNTQQAQLEAAQ LNLQAELTTAQDQKATLVAQKAAAEEAARQAAAAQAAAEAKAAAEAKALQ EQAAQAQAAANNNNTQATDASDQQAAAADNTQAAQTGDSTDQSAAQAVNN SDQESTTATAAQPSASSASTAAVAANTSSANTYPAGQCTWGVKSLAPWVG NYWGNGGQWAASAAAAGYRVGSTPSAGAVAVWNDGGYGHVAYVTGVQGGQ IQVQEANYAGNQSIGNYRGWFNPGSVSYIYPN

TABLE-US-00005 TABLE 9 Deduced Amino Acid Sequence of S. mutans strain 5SM3 GbpB GenBank accession number AY046414 MKKRILSAVLVSGVTLSSATTLSAVKADDFDAQIASQDSKINNLTAQQQA (SEQ ID NO:33) AQAQVNTIQGQVSALQTQQAELQAENQRLEAQSATLGQQIQTLSSKIVAR NESLKQQARSAQKSNAATSYINAIINSKSVSDAINRVSAIREVVSANEKM LQQQEQDKAAVEQKQQENQAAINTVAANQETIAQNTNALNTQQAQLEAAQ LNLQAELTTAQDQKATLVAQKAAAEEAARQAAAAQAAAEAKAAAEAKALQ EQAAQAQAAANNNTQATDASDQQAAAADNTQAAQTGDSTEQSAAQAVNNS DQESTTATEAQPSASSASTAVVTANTSSANTYPAGQCTWGVKSLAPWVGN YWGNGGQWAASAAAAGYRVGSTPSAGAVAVWNDGGYGHVAYVTGVQGGQI QVQEANYAGNQSIGNYRGWFNPGSVSYIYPN

The compositions described herein, e.g., subunit vaccine compositions and immunogenic compositions, contain an amino acid sequence subunit of GbpB that is of sufficient length to raise an immune response in a mammal to which it is administered. As used herein, the terms "subunit" or "fragment" refer to a portion of the GbpB protein that is less than the whole naturally-occurring protein. For example, a fragment contains at least 5 contiguous amino acids of the full length naturally-occurring protein. Vaccines containing the peptide constructs described herein elicit antibodies, which bind specifically to functional domains of GbpB and/or GTF and have the additional advantage that such vaccines do not induce immunity to irrelevant or unwanted epitopes. Useful peptides are of sufficient length to raise an immune response in a mammal to which it is administered but will be less than the complete amino acid sequence of the intact GbpB. Typically, the peptide is at least 5 7 amino acids in length. Preferably the peptide is at least 12 amino acids in length; more preferable the peptide is at least 23 amino acids in length. GbpB polypeptides are derived from S. mutans. However, glucan binding proteins from the other strains of S. mutans, which share significant homology and/or function, can also be utilized. For example, a peptide in the immunogenic compositions and subunit vaccines of the invention typically comprise at least six amino acids with at least four matches to MHC Class II binding motifs. Preferably, the peptide has greater than five amino acid matches and most preferably the peptide has greater than six amino acid matches to an MHC class II binding motif. The matches are determined, for example, using a matrix-based algorithm for epitope prediction known in the art.

Peptides as shown in FIG. 1 which have a significant peak resulting from a comparison of GbpB primary sequence against a set of DBRI alleles from MHC class II motif are also contemplated. For example, according to FIG. 1, peptides which extend at least 6 amino acid residues to the right in length from residues 16, 62, 90, 121, 322 and 369 are peptides having at least four matching residues to DBRI alleles and are contemplated for use in the compositions of the instant application. Suitable peptides may also encompass amino acid residues to the left of the indicated peak.

HLA-binding Peptides of GbpB

GbpB peptides were synthesized and evaluated for immunogenicity, reactivity with the parent protein, and induction of caries-protective immunity. Exemplary peptides include the following fragments of glucan binding protein-B:

TABLE-US-00006 KSNAATSYINAIINSKSVSD (the SYI peptide GbpB residues 113 132); (SEQ ID NO: 1) KHKLITIQGQVSALQTQQAG; (SEQ ID NO: 2) the SAS peptide TATEAQPSASSASTAAVAAN residues 306 325; (SEQ ID NO: 3) LSAVLVSGVTLSSATTLSAV residues 6 25; (SEQ ID NO: 4) LSSATTLSAVKADDFDAQIA residues 16 35; (SEQ ID NO: 5) QIASQDSKINNLTAQQQAAQ residues 33 52; (SEQ ID NO: 6) QDSKINNLTAQQQAAQAQVN residues 37 56; (SEQ ID NO: 7) QQAAQAQVNTIQGQVSALQT residues 48 67; (SEQ ID NO: 8) QAQVNTIQGQVSALQTQQAE residues 52 71; (SEQ ID NO: 9) QQIQTLSSKIVARNESLKQQ residues 88 107; (SEQ ID NO: 10) ATSYINAIINSKSVSDAINR residues 117 136; (SEQ ID NO: 11) VSAIREVVSANEKMLQQQEQ residues 137 156; (SEQ ID NO: 12) TVAANQETIAQNTNALNTQQ residues 174 193; (SEQ ID NO: 13) AQLEAAQLNLQAELTTAQDQ residues 194 213; (SEQ ID NO: 14) KATLVAQKAAAEEAARQAAA residues 214 233; (SEQ ID NO: 15) ALQEQAAQAQVAANNNTQAT residues 248 267; (SEQ ID NO: 16) TEQSAAQAVNNSDQESTTAT residues 289 308; (SEQ ID NO: 17) QPSASSASTAAVAANTSSAN residues 311 330; (SEQ ID NO: 18) GNYWGNGGQWAASAAAAGYR residues 349 368; (SEQ ID NO: 19) AGYRVGSTPSAGAVAVWNDG residues 365 384; (SEQ ID NO: 20) DGGYGHVAYVTGVQGGQIQV residues 383 402; (SEQ ID NO: 21) QEANYAGNQSIGNYRGWFNP residues 403 422; (SEQ ID NO: 22) GNYWGNGGQWAASAAAAGRY. (SEQ ID NO: 41)

Amino acid residue coordinates refer to full length GbpB (SEQ ID NO:29). Equivalent peptides are intended to include equivalent sites (e.g., positions or residues) in other mutans streptococcal glucan binding proteins. For example, other glucan binding peptides can be found in S. sobrinus or other S. mutans strains. The equivalents can be identified, for example, by aligning the amino acid sequences of other mutans streptococcal GbpB's, as is routinely done by one of skill in the art.

As used herein, a vaccine composition is a composition, which elicits an immune response in a mammal to which it is administered. Elicitation of GbpB-specific antibodies protects the immunized mammal against subsequent challenge by the immunizing agent or an immunogenically cross-reactive agent. For example, production of mucosal antibodies specific for GbpB reduces the amount of S. mutans in an immunized mammal. Protection can be complete or partial, such as a reduction or elimination of symptoms or infection as compared with an unvaccinated mammal. An immunogenically cross-reactive agent can be, for example the whole protein (GbpB) from which a subunit peptide used as the immunogen is derived. Alternatively, an immunogenically cross-reactive agent can be a different protein, which is recognized in whole or in part by the antibodies elicited by the immunizing agent.

As used herein, an immunogenic composition encompasses a composition, which elicits an immune response in a mammal to which it is administered and which may or may not protect the immunized mammal against subsequent challenge with the immunizing agent or an immunogenically cross-reactive agent.

The raised immune response is characterized by a B cell response, a T cell response or both a B cell and T cell response. The B cell response is associated with the appearance of mucosal antibody, which is predominately IgA, and systemic antibody, which is predominantly IgG. The antibodies elicited by immunization preferably recognize both the immunizing agent and an immunogenically cross-reactive agent (e.g., the immunizing peptide and the intact GbpB protein). The antibody response protects the immunized mammal against subsequent challenge or infection with the immunizing agent or an immunogenically cross-reactive agent.

In addition to the peptides listed in Table 1, other immunogenic domains of GbpB, as well as domains of non-GbpB origin, which enhance adjuvanticity or produce an immunogenic response against other infectious agents are optionally included in the compositions of the invention. For example, the vaccine or immunogenic composition contains an additional immunogenic component which is an immunogenic portion of a pathogen including, but not limited to, diphtheria, pertussis, tetanus, measles, influenza, poliovirus, and retroviruses resulting in a multivalent composition raising an immune response to greater than one infectious disease or agent. A multivalent vaccine includes immunogenic epitopes and appropriate adjuvant sequences targeting early childhood infections.

GbpB-GTF Chimeric Peptides

Immunogenic compositions containing one or more domains of GbpB combined with one or more domains of GTF were produced and evaluated for the ability to elicit antibody production. This strategy permits a combined attack on the molecular pathogenesis of mutans streptococci utilizing two or more epitopes. Synthetic peptides containing an amino acid sequence of one or more functional domains of Streptococcus mutans glucosyltransferases induce immune responses, which reduce recolonization of the bacteria. Chimeric peptides containing GTF sequences and GbpB sequences provide a more comprehensive attack on the colonization of the bacteria by increasing the enzyme inhibitory capacity of the immune response, eliminating responses to irrelevant epitopes and reducing the glucan binding capacity.

Tables 10 16 include the amino acid sequence of GTF isozymes from various Streptococci.

TABLE-US-00007 TABLE 10 Deduced Amino Acid Sequence of S. mutans GTF-B MDKKVRYKLRKVKKRWVTVSVASAVMTLTTLSGGLVKADSNESK (SEQ ID NO:34) SQISNDSNTSVVTANEESNVITEATSKQEAASSQTNHTVTTSSSSTSVVNPKEVVSNP YTVGETASNGEKLQNQTTTVDKTSEAAANNISKQTTEADTDVIDDSNAANLQILEKLP NVKEIDGKYYYYDNNGKVRTNFTLIADGKILHFDETGAYTDTSIDTVNKDIVTTRSNL YKKYNQVYDRSAQSFEHVDHYLTAESWYRPKYILKDGKTWTQSTEKDFRPLLMTWWPD QETQRQYVNYMNAQLGINKTYDDTSNQLQLNIAAATIQAKIEAKITTLKNTDWLRQTI SAFVKTQSAWNSDSEKPFDDHLQNGAVLYDNEGKLTPYANSNYRILNRTPTNQTGKKD PRYTADNTIGGYEFLLANDVDNSNPVVQAEQLNWLHFLMNFGNIYANDPDANFDSIRV DAVDNVDADLLQIAGDYLKAAKGIHKNDKAANDHLSILEAWSDNDTPYLHDDGDNMIN MDNKLRLSLLESLAKPLNQRSGMNPLITNSLVNRTDDNAETAAVPSYSFIRAHDSEVQ DLIADIIKAEINPNVVGYSFTMEEIKKAFEIYNKDLLATEKKYTHYNTALSYALLLTN KSSVPRVYYGDMFTDDGQYMAHKTINYEAIETLLKARIKYVSGGQAMRNQQVGNSEII TSVRYGKGALKATDTGDRTTRTSGVAVIEGNNPSLRLKASDRVVVNMGAAHKNQAYRP LLLTTDNGIKAYHSDQEAAGLVRYTNDRGELIFTAADIKGYANPQVSGYLGVWVPVGA ALTKMFALRLARPHQQMASVHQNAALDSRVMFEGFSNFQAFATKKEEYTNVVIAKNVD KFAEWGVTDFEMAPQYVSSTDGSFLDSVIQNGYAFTDRYDLGTSKPNKYGTADDLVKA IKALHSKGIKVMADWVPDQMYAFPEKEVVTATRVDKYGTPVAGSQIKNTLYVVDGKSS GKDQQAKYGGAFLEELQAKYPELFARKQISTGVPMDPSVKIKQWSAKYFNGTNILGRG AGYVLKDQATNTYFNISDNKEINFLPKTLLNQDSQVGFSYDGKGYVYYSTSGYQAKNT FISEGDKWYYFDNNGYMVTGAQSINGVNYYFLSNGLQLRDAILKNEDGTYAYYGNDGR RYENGYYQFMSGVWRHFNNGEMSVGLTVIDGQVQYFDEMGYQAKGKFVTTADGKIRYF DKQSGNMYRNRFIENEEGKWLYLGEDGAAVTGSQTINGQHLYFRANGVQVKGEFVTDH HGRISYYDGNSGDQIRNRFVRNAQGQWFYFDNNGYAVTGARTINGQLLYFRANGVQVK GEFVTDRYGRISYYDGNSGDQIRNRFVRNAQGQWFYFDNNGYAVTGARTINGQHLYFR ANGVQVKGEFVTDRHGRISYYDGNSGDQIRNRFVRNAQGQWFYFDNNGYAVTGARTIN GQHLYFRANGVQVKGEFVTDRYGRISYYDANSGERVRIN

TABLE-US-00008 TABLE 11 Deduced Amino Acid Sequence of S. mutans GTF-C MEKKVRFKLRKVKKRWVTVSIASAVVTLTSLSGSLVKADSTDDR (SEQ ID NO:35) QQAVTESQASLVTTSEAAKETLTATDTSTATSATSQPTATVTDNVSTTNQSTNTTANT ANFVVKPTTTSEQAKTDNSDKTITTSKAVNRLTATGKFVPANNNTAHPKTVTDKIVPI KPKIGKLKQPSSLSQDDIAALGNVKNTRKVNGKYYYYKEDGTLQKNYALNINGKTFFF DETGALSNNTLPSKKGNITNNDNTNSFAQYNQVYSTDVANFEHVDHYLTAESWYRPKY ILKDGKTWTQSTEKDFRPLLMTWWPDQETQRQYVNYMNAQLGIHQTYNTATSPLQLNL AAQTIQTKIEEKITAEKNTNWLRQTISAFVKTQSAWNSDSEKPFDDHLQKGALLYSNN SKLTSQANSNYRILNRTPTNQTGKKDPRYTADRTIGGYEFLLANDVDNSNPVVQAEQL NWLHFLMNFGNIYANDPDANFDSIRVDAVDNVDADLLQIAGDYLKAAKGIHKNDKAAN DHLSILEAWSYNDTPYLHDDGDNMINMDNRLRLSLLYSLAKPLNQRSGMNPLITNSLV NRTDDNAETAAVPSYSFIRAHDSEVQDLTRNIIRTETNPNVVGYSFTTEEIKKAFEIY NKDLLATEKKYTHYNTALSYALLLTNKSSVPRVYYGDMFTDDGQYMAHKTINYEAIET LLKARIKYVSGGQAMRNQQVGNSETITSVRYGKGALKATDTGDRTTRTSGVAVIEGNN PSLRLKASDRVVVNMGAAHKNQAYRPLLLTTDNGIKAYHSDQEAAGLVRYTNDRGELI FTAADIKGYANPQVSGYLGVWVPVGAAADQDVRVAASTAPSTDGKSVHQNAALDSRVM EEGFSNFQAFATKKEEYTNVVIAKNVDKFAEWGVTDFEMAPQYVSSTDGSFLDSVIQN GYAETDRYDLGISKPNKYGTADDLVKAIKALHSKGIKVMADWVPDQMYALPEKEVVTA TRVDKYGTPVAGSQIKNTLYVVDGKSSGKDQQAKYGGAFLEELQAKYPELFARKQIST GVPMDPSVKIKQWSAKYFNGTNILGRGAGYVLKDQATNTYFSLVSDNTFLPKSLVNPN HGTSSSVTGLVFDGKGYVYYSTSGNQAKNAFISLGNNWYYFDNNGYMVTGAQSINGAN YYFLSNGIQLRNAIYDNGNKVLSYYGNDGRRYENGYYLFGQQWRYFQNGIMAVGLTRV HGAVQYFDASGFQAKGQFITTADGKLRYFDRDSGNQISNRFVRNSKGEWFLFDHNGVA VTGTVTFNGQRLYFKPNGVQAKGEFIRDANGYLRYYDPNSGNEVRNRFVRNSKGEWEL FDHNGIAVTGARVVNGHASILSLMVFRLRESSLQSVKVVSNTMTLIPEMKFVIVM

TABLE-US-00009 TABLE 12 Deduced Amino Acid Sequence of S. mutans GTF-D METKRRYKMHKVKKHWVTVAVASGLITLGTTTLGSSVSAETEQQ (SEQ ID NO:36) TSDKVVTQKSEDDKAASESSQTDAPKTKQAQTEQTQAQSQANVADTSTSITKETPSQN ITTQANSDDKTVTNTKSEEAQTSEERTKQSEEAQTTASSQALTQAKAELTKQRQTAAQ ENKNPVDLAAIPNVKQIDGKYYYIGSDGQPKKNFALTVNNKVLYFDKNTGALTDTSQY QFKQGLTKLNNDYTPHNQIVNFENTSLETIDNYVTADSWYRPKDILKNGKTWTASSES DLRPLLMSWWPDKQTQIAYLNYMNQQGLGTGENYTADSSQESLNLAAQTVQVKIETKI SQTQQTQWLRDIINSFVKTQPNWNSQTESDTSAGEKDHLQGGALLYSNSDKTAYANSD YRLLNRTPTSQTGKPKYFEDNSSGGYDFLLANDTDNSNPVVQAEQLNWLHYLMNYGSI VANDPEANFDGVRVDAVDNVNADLLQIASDYLKAHYGVDKSEKNAINHLSILEAWSDN DPQYNKDTKGAQLPIDNKLRLSLLYALTRPLEKDASNKNEIRSGLEPVITNSLNNRSA EGKNSERMANYIFIRAHDSEVQTVIAKIIKAQINPKTDGLTFTLDELKQAFKIYNEDM RQAKKKYTQSNIPTAYALMLSNKDSITRLYYGDMYSDDGQYMATKSPYYDAIDTLLKA RIKYAAGGQDMKITYVEGDKSHMDWDYTGVLTSVRYGTGANEATDQGSEATKTQGMAV ITSNNPSLKLNQNDKVIVNMGAAHKNQEYRPLLLTTKDGLTSYTSDAAAKSLYRKTND KGELVFDASDIQGYLNPQVSGYLAVWVPVGASDNQDVRVAASNKANATGQVYESSSAL DSQLIYEGFSNFQDFVTKDSDYTNKKIAQNVQLFKSWGVTSFEMAPQYVSSEDGSFLD SIIQNGYAFEDRYDLAMSKNNKYGSQQDMINAVKALHKSGIQVIADWVPDQIYNLPGK EVVTATRVNDYGEYRKDSEIKNTLYAANTKSNGKDYQAKYGGAFLSELAAKYPSIFNR TQISNGKKIDPSEKITAWKAKYFNGTNILGRGVGYVLKDNASDKYFELKGNQTYLPKQ MTNKEASTGFVNDGNGMTFYSTSGYQAKNSFVQDAKGNWYYFDNNGHMVYGLQQLNGE VQYFLSNGVQLRESFLENADGSKNYFGHLGNRYSNGYYSFDNDSKWRYFDASGVMAVG LKTINGNTQYFDQDGYQVKGAWITGSDGKKRYFDDGSGNMAVNRFANDKNGDWYYLNS DGIALVGVQTINGKTYYFGQDGKQIKGKIITDNGKLKYFLANSGELARNIFATDSQNN WYYFGSDGVAVTGSQTIAGKKLYFASDGKQVKGSFVTYNGKVHYYHADSGELQVNRFE ADKDGNWYYLDSNGEALTGSQRINDQRVFFTREGKQVKGDVAYDERRLLVYR

TABLE-US-00010 TABLE 13 Deduced Amino Acid Sequence of S. sobrinus GTF-I MEKNVRFKMHKVKKRWVTLSVASATMLASALGASVASADTDTAS (SEQ ID NO:37) DDSNQAVVTGDQTTNNQATDQTSIAATATSEQSASTDAATDQASAAEQTQGTTASTDT AAQTTTNANEAKWVPTENENQGFTDEMLAEAKNVATAESDSIPSDLAKMSNVKQVDGK YYYYDQDGNVKKNFAVSVGDKIYYFDETGAYKDTSKVDADKSSSAVSQNATIFAANNR AYSTSAKNFEAVDNYLTADSWYRPKSILKDGKTWTESGKDDFRPLLMAWWPDTETKRN YVNYMNKVVGTDKTYTAETSQADLTAAAELVQARIEQKITSENNTKWLREAISAFVKT QPQWNGESEKPYDDHLQNGALLFDNQTDLTPDTQSNYRLLNRTPTNQTGSLDSRFTYN PNDPLGGYDFLLANDVDNSNPVVQAEQLNWLHYLLNFGSIYANDADANFDSIRVDAVD NVDADLLQISSDYLKAAYGIDKNNKNANNHVSIVEAWSDNDTPYLHDDGDNLMNMDNK FRLSMLWSLAKPLDKRSGLNPLIHNSLVDREVDDREVETVPSYSFARAHDSEVQDTIR DIIKAEINPNSFGYSFTQEEIEQAFKIYNEDLKKTDKKYTHYNVPLSYTLLLTNKGST PRVYYGDMFTDDGQYMANKTVNYDAIESLLKARMKYVSGGQAMQNYQIGNGETLTSVR YGKGALKQSDKGDATTRTSGVGVVMGNQPNFSLDGKVVALNMGAAHANQEYRALMVST KDGVATYATDADASKAGLVKRTDENGYLYFLNDDLKGVANPQVSGFLQVWVPVGAADD QDIRVAASDTASTDGKSLHQDAAMDSRVMFEGFSNFQSFATKEEEYTNVVIANNVDKF VSWGITDFEMAPQYVSSTDGQFLDSVIQNGYAFTDRYDLGMSKANKYGTADQLVKAIK ALHAKGLKVMADWVPDQMYTFPKQEVVTVTRTDKFGKPIAGSQTNHSLYVTDTKSSGD DYQAKYGGAFLDELKEKYPELFTKKQISTGQAIDPSVKIKQWSAKYFNGSNILGRGAD YVLSDQVSNKYFNVASDTLFLPSSLLGKVVESGIRYDGKGYIYNSSATGDQVKASFIT EAGNLYYFGKDGYMVTGAQTINGANYFFLENGTALRNTIYTDAQGNSHYYANDGKRYE NGYQQFGNDWRYFKDGNMAVGLTTVDGNVQYFDKDGVQAKDKIIVTRDGKVRYFDQHN GNAATNTFIADKTGHWYYLGKDGVAVTGAQTVGKQKLYFEANGQQVKGDFVTSDEGKL YFYDVDSGDMWTDTFIEDKAGNWFYLGKDGAAVTGAQTIRGQKLYFKANGQQVKGDIV KGTDGKIRYYDAKSGEQVFNKTVKAADGKTYVIGNDGVAVDPSVVKGQTFKDASGALR FYNLKGQLVTGSGWYETANHDWVYIQSGKALTGEQTINGQHLYFKEDGHQVKGQLVTG TDGKVRYYDANSGDQAFNKSVTVNGKTYYFGNDGTAQTAGNPKGQTFKDGSDIRFYSM EGQLVTGSGWYENAQGQWLYVKNGKVLTGLQTVGSQRVYFDENGIQAKGKAVRTSDGK IRYFDENSGSMITNQWKFVYGQYYYFGNDGARIYRGWN

TABLE-US-00011 TABLE 14 Deduced Amino Acid Sequence of S. sobrinus GTF-U MEKKLHYKLHKVKKHWVTIAVASIGLVSLVGAGT (SEQ ID NO: 38) VSAEDKVAND TTAQATVGVDTGQDQATTNDANT NTTDTDTADQSANTNQDQAGSDQSNNQDQAKQDT ANTDRNQADNSQTDNNQATDQATSPATDGTSVQR RDAANVATAADQEGQTAPSEQEKSAALSLDNVKL IDGKYYYVQADGSYKKNFAITVNGQMLYFDSDTG ALSSTSTYSFSQGTTNLVDDFSSHNKAYDSTAKS FELVNGYLTANSWYRPAGILRNGQTWEASNENDL RPVLMSWWPDKDTQVAYVNYMNKYLSANETEVTN ETSQVDLNKEAQSIQTKIEQKITSDNSTQWLRTA MEAFVAAQPKWNMSTENFNKGDHLQGGALLYTNS DLTPWANSDYRLLNRTPTQQDGTKKYFTEGGEGG YEFLLSNDVDNSNPVVQAEQLNQLHYLMNWGDIV MGDKDANFDGVRVDAVDNVNADLLQVYSNYFKDN YKVTDSEANALAHISILEAWSLNDNQYNEDTNGT ALSIDNSSRLTSLAVLTKQPGQRIDLSNLISESV NKERANDTAYGDTIPTYSFVRAHDSEVQTVIAKI VKEKIDTNSDGYTFTLDQLKDAFKIYNEDMAKVN KTYTHYNIPAAYALLLSNMESVPRVYYGDLYTDD GQYMAKKSPYYDAIATMLQGRIAYVSGGQSEEVH KVNGNNQILSSVRYGQDLMSADDTQGTDLSRTSG LVTLVSNDPNLDLGGDSLTVNMGRAHANQAYRPL ILGTKDGVQSYLKDSDTNIVKYTDANGNLTFTAD DIKGYSTVDMSGYLAVWVPVGAKDGQDVRVAADT NQKADGKSLKTSAALDSQVIYEGFSNFQDFANND ADYTNKKIAENADFFKKLGITSFEMAPQYVSATD GSFLDSIIQNGYAFSDRYDLAMSKNNKYGSKDDL ANALKALHANGIQAIADWVPDQIYQLPGEEVVTA KRTNSYGNPTFDAYINNALYATNTKSSGSDYQAQ YGGAFLDELKAKYPDMFTVNMISTGKPIDPSTKI KQWEAKYFNGTNVLGKGAGYVLSDDATGKYFTVN ENGDFLPASFTGDQNAKTGFYYDGTGMAYYSTSG NKAVNSFIYEGGHYYYFDKDGHMVTGSYKAEDGN DYYFLPNGIQMRDAIYQDAQGNSYYYGRTGILYK GDNWYPFVDPNNANKTVFRYFDANNVMAIGYRNM YGQTYYFDENGEQAKGQLLTDDKGTHYFDEDNGA MAKNKFVNVGDDWYYMDGNGNAVKGQYPVNNQIL YFNPETGVQVKGQFITDAQGRTSYYDANSGALKS SGFFTPNGSDWYYAENGYVYKGFKQVAENQDQWY YFDQTTGKQAKGAAKVDGRDLYFNPDSGVQVKGD FATDESGNTSFYHGDNGDKVVGGFFTTGNNAWYY ADNNGNLVKGFQEIDGKWYHFDEVTGQQAKGAAL VNGQQLYFDVDSGIQVKGDFVTDGQGNTSYYDVN SGDKKVNGFFTTGDNAWYYADGQGNLAKGRKSID NQDLYFDPATGKQVKGQLVSIDGRNYYFDSGSGN MAKNRFVRIGDQWIYEGNDGAATNL

TABLE-US-00012 TABLE 15 Deduced Amino Acid Sequence of S. downei GTE-S MEKNLRYKLHKVKKQWVAIGVTTVTLSFLAGGQV (SEQ ID NO: 39) VAADTNNNDG TSVQVNKMVPSDPKFDAQAQNGQ LAQAMFKAANQADQTATSQVSPATDGRVDNQVTP AANQPAANVANQDVANPATDAGALNRQSAADTST DGKAVPQTSDQPGHLETVDGKTYYVDANGQRLKN YSMVIDGKTYYFDGQTGEAQTDLPKTGQANQDNV PDSYQANNQAYSNEASSFETVDNYLTADSWYRPR KILKNGQSWQASSEGDLRPILMTWWPDAATKAAY ANFWAKEGLISGSYRQNSANLDAATQNIQSAIEK KIASEGNTNWLRDKMSQFVKSQNQWSIASENETV YPNQDHMQGGALLFSNSKDTEHANSDWRLLNRNP TFQTGKQKYFTTNYAGYELLLANDVDNSNPVVQA EQLNHLHYLMNWGDIVMGDKDANFDGVRVDAVDN VNADLLQIQRDYYKAKYGTDQNEKNAIDHLSILE AWSGNDNDYVKDQNNFSLSIDNDQRSGMLKAFGY ASAYRGNLSNLATAGLKNRSANPDSDPVPNYVFI RAHDSEVQTRIAKIIREKLGKTNADGLTNLTLDD LNKAFDIYNQDMNATDKVYYPNNLPMAYAWMLQN KDTVTRVYYGDMYTDNGQYMATKTPFYNAIETLL KGRIKYVAGGQAVSYKQDWSSGILTSVRYGKGAN SASDAGNTETRNSGMALLINNRPNFRAYRNLTLN MGAAHKSQAYRPLLLSTKDGIATYLNDSDVDSRQ YKYTDSQGNLSFSASELQSVANAQVSGMIQVWVP VGAADNQDVRTSPSTQATKDGNIYHQSDALDSQV IYEGFSNFQAFAQSPDQYTNAVIAKNGDLFKSWG ITQFEMAPQYVSSEDGTFLDSVILNGYAFSDRYD LAMSKNNKYGSKQDLANAIKGLQSAGIKVLSDLV PNQLYNLPGKEVVTATRVNQYGQAKSGATINKTP YVANTRSYGDYQEQYGGKFLDDLQKLYPRLFSTK QISTGKPIDPSVKITNWSAKYFNGSNILGRGAKY VLSEGNKYLNLADGKLFLPTVLNNTYGQPQVSAN GFISKNGGIHYLDKNGQEVKNRFKEISGSWYYFD SDGKMATGKTKIGNDTYLFMPNGKQLKEGVWYDG KKAYYYDDNGRTWTNKGFVEFRVDGQDKWRYFNG DGTIAIGLVSLDNRTLYFDAYGYQVKGQTVTING KSYTFDADQGDLVQTDNANPAPQGQAGWKLLGDN QWGYRKDGQLLTGEQTIDGQKVFFQDNGVQVKGG TATDASGVLRFYDRDQGHQVGKGWYSTSDDNWVY VNESGQVLTGLQTIDGQTVYFDDKGIQAKGKAVW DENGNLRYFDADSGNMLRDRWKNVDGNWYYFNRN GLATRW

TABLE-US-00013 TABLE 16 Deduced Amino Acid Sequence of S. salivarius GTF-I MENKIHYKLHKVKKQWVTIAVASVALATVLGGLS (SEQ ID NO: 40) VTTSSVSADE TQDKTVTQSNSGTTASLVTSPEA TKEADKRTNTKEADVLTPAKETNAVETATTTNTQ ATAEAATTATTADVAVAAVPNKEAVVTTDAPAVT TEKAEEQPATVKAEVVNTEVKAPEAALKDSEVEA ALSLKNIKNIDGKYYYVNEDGSHKENFAITVNGQ LLYFGKDGALTSSSTYSFTPGTTNIVDGFSINNR AYDSSEASFELIDGYLTADSWYRPASIIKDGVTW QASTAEDFRPLLMAWWPNVDTQVNYLNYMSKVFN LDAKYSSTDKQETLKVAAKDIQIKIEQKIQAEKS TQWLRETISAFVKTQPQWNKETENYSKGGGEDHL QGGALLYVNDSRTPWANSDYRRLNRTATNQTGTI DKSILDEQSDPNHMGGFDFLLANDVDLSNPVVQA EQLNQIHYLMNWGSIVMGDKDANFDGIRVDAVDN VDADMLQLYTNYFREYYGVNKSEANALAHISVLE AWSLNDNHYNDKTDGAALAMENKQRLALLFSLAK PIKERTPAVSPLYNNTFNTTQRDEKTDWINKDGS KAYNEDGTVKQSTIGKYNEKYGDASGNYVFIRAH DNNVQDIIAEIIKKEINPKSDGFTITDAEMKQAF EIYNKDMLSSDKKYTLNNIPAAYAVMLQNMETIT RVYYGDLYTDDGHYMETKSPYYDTIVNLMKSRIK YVSGGQAQRSYWLPTDGKMDNSDVELYRTNEVYT SVRYGKDIMTANDTEGSKYSRTSGQVTLVANNPK LNLDQSAKLNVEMGKIHANQKYRALIVGTADGIK NFTSDADAIAAGYVKETDSNGVLTFGANDIKGYE TFDMSGFVAVWVPVGASDNQDIRVAPSTEAKKEG ELTLKATEAYDSQLIYEGFSNFQTIPDGSDPSVY TNRKIAENVDLFKSWGVTSFEMAPQFVSADDGTF LDSVIQNGYAFADRYDLAMSKNNKYGSKEDLRDA LKALHKAGIQAIADWVPDQIYQLPGKEVVTATRT DGAGRKIADAIIDHSLYVANSKSSGKDYQAKYGG EFLAELKAKYPEMFKVNMISTGKPIDDSVKLKQW KAEYFNGTNVLERGVGYVLSDEATGKYFTVTKEG NFIPLQLTGKEKVITGFSSDGKGITYFGTSGTQA KSAFVTFNGNTYYFDARGHMVTNSEYSPNGKDVY RFLPNGIMLSNAFYIDANGNTYLYNSKGQMYKGG YTKFDVSETDKDGKESKVVKFRYFTNEGVMAKGV TVIDGFTQYFGEDGFQAKDKLVTFKGKTYYFDAH TGNGIKDTWRNINGKWYYFDANGVAATGAQVING QKLYFNEDGSQVKGGVVKNADGTYSKYKEGFGEL VTNEFFTTDGNVWYYAGANGKTVTGAQVINGQHL YFNADGSQVKGGVVKNADGTYSKYNASTGERLTN EFFTTGDNNWYYIGANGKSVTGEVKIGDDTYFFA KDGKQVKGQTVSAGNGRISYYYGDSGKRAVSTWI EIQPGVYVYFDKNGLAYPPRVLN

Exemplary GTF peptides are shown in Tables 17 19.

TABLE-US-00014 TABLE 17 Catalytic Domain Peptides of GTF DANFDSIRVDAVDNVDADLLQI (SEQ ID NO: 25) PLDKRSGLNPLIHNSLVDREVDDRE (SEQ ID NO: 26)

TABLE-US-00015 TABLE 18 Glucan-binding Domain Peptides of GTF TGAQTIKGQKLYFKANGQQVKG (SEQ ID NO: 23) DGKLRYYDANSGDQAFNKSV (SEQ ID NO: 27)

TABLE-US-00016 TABLE 19 Surface Domain Peptide of GTF QWNGESEKPYDDHL (SEQ ID NO: 28)

Diepitopic peptide constructs, which induce protective antibody to both S. mutans GbpB, and GTF of mutans streptococci are made using known methods. One peptide is drawn from the GbpB sequence and the other peptide is drawn from the GTF sequence. Useful GTF sequences are described in U.S. Pat. No. 5,686,075 and U.S. patent application Ser. No. 09/290,049. The multiepitopic sequences are placed on a multiple antigenic peptide (MAP) backbone, expressed recombinantly or in an attenuated expression vector or by other methods known in the art. For example, diepitopic immunogenic and vaccine compositions include S. mutans GbpB peptide KSNAATSYINAIINSKSVSD (SEQ ID NO: 1) combined with S. sobrinus GTF-B residues 1303 to 1324; TGAQTIKGQKLYFKANGQQVKG (SEQ ID NO: 23) or S. mutans GTF-B residues 442 to 462; DANFDSIRVDAVDNVDADLLQ (SEQ ID NO: 24).

The peptides are directly linked to one another or are separated by intervening residues (e.g., one or more lysines). The compositions optionally contain an immunogenicity-enhancing agent, such as a bacterially-derived adjuvant. For example, a GbpB or GTF peptide is conjugated to a known protein, (such as tetanus toxoid) or a carrier (such as a synthetic polymer carrier) to give a macromolecular structure to the composition, which enhances immunogenicity. The compositions contain at least two different peptides, and the peptides are synthesized and covalently attached to a peptidyl core matrix to yield a macromolecule with a high density of peptides in a single structure. Each peptide in such a structure comprises a GbpB peptide, which is of sufficient length to raise an immune response in a mammal to which it is administered. The composition optionally contains a plurality of copies of a GbpB or GTF peptide. Synthetic peptide vaccine design was carried out using a MAP construct using known methods, e.g., Tam et al., PNAS USA 85:5409 5413 (1988).

A peptidyl core matrix contains of amino acids such as lysine, arginine and histidine. In particular, at least 2 peptides are synthesized on a core matrix of at least one lysine to yield a macromolecular vaccine composition. Particularly, at least 2 peptides are synthesized on a core matrix of 3 lysines. In another example, the vaccine composition is made by covalently attaching 4 peptides to a core matrix of 3 lysines yielding a radially branched peptide with four dendritic arms. The four peptides present can be the same or different. Such multiepitopic peptide constructs induced enhanced immune responses. Moreover, the combination of sequences from several strains into a synthetic or recombinant multi-epitopic construct increases the protective potential of subunit vaccines for dental caries.

Vaccine Formulations

Suitable peptide(s) are incorporated into a microparticle or microsphere, e.g., a PLGA (poly(lactide-co-glycolide) adjuvant) microparticle, for improved delivery and immune response. Different particles or spheres have different release profiles depending on properties, such as polymer material, pore size, total particle/sphere size, and degradation kinetics. Such bioadhesive microparticles can facilitate primary and secondary mucosal antibody formation. Microparticles prepared from the biodegradable and biocompatible polymers, the poly(lactide-co-glycolides) or (PLG), have been shown to be effective adjuvants for a number of antigens. Moreover, PLG microparticles can control the rate of release of entrapped antigens and therefore, offer potential for the development of single-dose vaccines. To prepare single-dose vaccines, microparticles with different antigen release rates are combined as a single formulation to mimic the timing of the administration of booster doses of vaccine. Adjuvants can also be entrapped within the microparticles or, alternatively, adjuvants can be co-administered.

Other examples of suitable microparticles or microspheres, which can be mixed with or loaded with the proteins, peptides, or antibodies described herein, include, but are not limited to, poly(sebacic anhydride) (PSA) microspheres (Berkland et al., J. Controlled Release vol. 24 (2003)); poly(ethylene glycol)/polylactide nano-particles (Caliceti et al., J. Controlled Release vol. 24 (2003)); oligo(poly(ethylene glycol) fumarate) (OPF) (Holland et al., J. Controlled Release vol. 24 (2003)).

Other suitable biocompatible, biodegradable polymers include, for example, poly(lactides), poly(glycolides), poly(lactide-co-glycolides), poly(lactic acid)s, poly(glycolic acid)s, poly(lactic acid-co-glycolic acid)s, polycaprolactone, polycarbonates, polyesteramides, polyanhydrides, poly(amino acids), polyorthoesters, polycyanoacrylates, poly(p-dioxanone), poly(alkylene oxalate)s, biodegradable polyurethanes, blends and copolymers thereof.

Further, the terminal functionalities of the polymer can be modified. For example, polyesters can be blocked, unblocked or a blend of blocked and unblocked polymers. A blocked polymer is as classically defined in the art, specifically having blocked carboxyl end groups. Generally, the blocking group is derived from the initiator of the polymerization and is typically an alkyl group. An unblocked polymer is as classically defined in the art, specifically having free carboxyl end groups.

Acceptable molecular weights for polymers used in this invention can be determined by a person of ordinary skill in the art taking into consideration factors such as the desired polymer degradation rate, physical properties such as mechanical strength, and rate of dissolution of polymer in solvent. Typically, an acceptable range of molecular weights is of about 2,000 Daltons to about 2,000,000 Daltons. In a preferred embodiment, the polymer is a biodegradable polymer or copolymer. In a more preferred embodiment, the polymer is a poly(lactide-co-glycolide) (hereinafter "PLGA") with a lactide:glycolide ratio of about 1:1 and a molecular weight of about 5,000 Daltons to about 70,000 Daltons. In an even more preferred embodiment, the molecular weight of the PLGA used in the present invention has a molecular weight of about 6,000 to about 31,000 Daltons.

The microparticles or microspheres are 0.25 6.0 microns in dimension. Suitable microparticles are 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, or 6.0 microns.

A sustained release composition of the invention contains from about 0.01% (w/w) to about 50% (w/w) of protein, peptide, or antibody incorporated into particles. The amount of such particles used will vary depending upon the desired effect of the protein, peptide, or antibody, the planned release levels, the times at which protein, peptide, or antibody should be released, and the time span over which the protein, peptide, or antibody will be released. A preferred range of particle loading is between about 0.1% (w/w) to about 30% (w/w) protein, peptide, or antibody to particles. A more preferred range of protein, peptide, or antibody to particle loading is between about 0.1% (w/w) to about 20% (w/w) particles. The most preferred loading of the particles is about 15% (w/w).

The sustained release composition of this invention can be formed into many shapes such as a film, a pellet, a cylinder, a disc or a microparticle A microparticle, as defined herein, comprises a polymeric component having a diameter of less than about one millimeter and having protein-, peptide-, or antibody-loaded particles dispersed therein. A microparticle can have a spherical, non-spherical or irregular shape. It is preferred that a microparticle be a microsphere. Typically, the microparticle will be of a size suitable for injection. A preferred size range for microparticles is from about 1 to about 180 microns in diameter.

A suitable polymer solution contains between about 1% (w/w) and about 30% (w/w) of a suitable biocompatible polymer, wherein the biocompatible polymer is typically dissolved in a suitable polymer solvent. Preferably, a polymer solution contains about 2% (w/v) to about 20% (w/v) polymer. A polymer solution containing 5% to about 10% (w/w) polymer is most preferred.

The method for forming a composition for modulating the release of a biologically active agent from a biodegradable polymer is further described in U.S. Pat. No. 5,656,297 to Bernstein et al. One suitable method for forming a sustained release composition from a polymer solution is the solvent evaporation method described in U.S. Pat. No. 3,737,337, issued to Schnoring et al., U.S. Pat. No. 3,523,906, issued to Vranchen et al., U.S. Pat. No. 3,691,090, issued to Kitajima et al., or U.S. Pat. No. 4,389,330, issued to Tice et al. Another method for forming sustained release microparticles from a polymer solution is described in U.S. Pat. No. 5,019,400, issued to Gombotz et al. This method of microsphere formation, as compared to other methods, such as phase separation, additionally reduces the amount of protein, peptide, or antibody required to produce a sustained release composition with a specific protein, peptide, or antibody content.

The proteins, peptides, or antibodies described herein can also be conjugated to polymers, such as N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer (Nan et al., J. Controlled Release vol. 24 (2003); polyvinylpyrrolidone (PVP) (Souza et al., J. Controlled Release vol. 24 (2003)); branched poly(L-glutamic acid) attached to poly(amidoamine) (PAMAM) dendrimer or polyethyleneimine (PEI) cores (Tansey et al., J. Controlled Release vol. 24 (2003)); or bacterial polysaccharide or lipopolysaccharide (LPS) (see e.g., Frosch, M. in "Vaccine Delivery Strategies").

Additionally, other ways of enhancing immune responses to mucosally applied peptides (antigens) include use of mucosal adjuvants such as detoxified versions of tetanus toxin (e.g. tetanus toxin Fragment C), cholera toxin or E. coli heat-labile toxins (Smith et al., Infect. Immunity 69(8):4767 4773 (2002)). Other immunostimulatory adjuvants include LPS derivatives, saponins, CpG oligonucleotides, and cytokines.

Peptides are formulated with a physiologically acceptable medium. The physiological medium may include, but is not limited to, water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol) and dextrose solutions. The optimum concentration of the active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known in the art, and will depend on the ultimate pharmaceutical formulation desired. Methods of introduction of exogenous peptides at the site of treatment include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, oral, sublingual, intraocular, rectal and intranasal. Other suitable methods of introduction can also include rechargeable or biodegradable devices and slow release polymeric devices. The compositions of this invention can also be administered as part of a combinatorial therapy with other agents.

Peptides are administered at an intravenous dosage of approximately 1 to 100 .mu.moles of the polypeptide per kg of body weight per day. Administration is typically parenteral. For example, the peptides are administered intravenously, subcutaneously, intramuscularly, intraperitoneally, orally, or intranasally.

Antibody Production

The peptides of the invention are used to raise antibodies or to elicit an immune response. The term "antibody" as used herein refers to immunoglobulin molecules and immunogenically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that specifically binds an antigen. A molecule that specifically binds to a peptide of the invention is a molecule that binds to that peptide or a fragment thereof, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the peptide. Examples of immunogenically active portions of immunoglobulin molecules include F(ab) and F(ab').sub.2 fragments which can be generated by treating the antibody with an enzyme such as pepsin. The invention provides polyclonal, monoclonal, and transgenic antibodies that bind to a peptide of the invention. The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of a peptide of the invention. A monoclonal antibody composition thus typically displays a single binding affinity for a particular peptide of the invention with which it immunoreacts.

Polyclonal antibodies are prepared as described above by immunizing a suitable subject with a desired immunogen, e.g., the whole glucan binding protein-B, a peptide of the invention or fragment thereof. The antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized peptide or protein. If desired, the antibody molecules directed against the peptide can be isolated from the mammal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction. Also, antibodies can be isolated from the yolks of immunized chicken eggs (IgY) (Svendsen et al., Lab. Anim. Sci. 45:89 93 (1995)) or transgenic antibodies can be prepared in plants or other hosts and extracted for human use (Ma et al., Eur. J. 1 mmol., 24:131 138 (1994)). At an appropriate time after immunization, e.g., when the antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein, Nature, 256:495 497 (1975), the human B cell hybridoma technique (Kozbor et al., Immunol. Today, 4:72 (1983)), the EBV-hybridoma technique (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77 96 (1985)) or trioma techniques. The technology for producing hybridomas is well known (see generally Ausubel, et al. (Eds.), Current Protocols in Immunology, John Wiley & Sons, Inc., New York, N.Y. (2001)). Briefly, an immortal cell line (typically a myeloma) is fused to lymphocytes (typically splenocytes) from a mammal immunized with an immunogen as described above, and the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds a peptide of the invention.

Any of the many well known protocols used for fusing lymphocytes and immortalized cell lines can be applied for the purpose of generating a monoclonal antibody to a peptide of the invention (see, e.g., Current Protocols in Immunology, supra; Galfre et al., Nature, 266:55052 (1977); R. H. Kenneth, in Monoclonal Antibodies: A New Dimension In Biological Analyses, Plenum Publishing Corp., New York, N.Y. (1980); and Lerner, Yale J. Biol. Med., 54:387 402 (1981)). Moreover, the ordinarily skilled worker will appreciate that there are many variations of such methods that also would be useful.

Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal antibody to a peptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the peptide to thereby isolate immunoglobulin library members that bind the peptide. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27 9400 01; and the Stratagene SurfZAP.TM. Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Pat. No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO 92/15679; PCT Publication No. WO 93/01288; PCT Publication No. WO 92/01047; PCT Publication No. WO 92/09690; PCT Publication No. WO 90/02809; Fuchs et al., Bio/Technology, 9:1370 1372 (1991); Hay et al., Hum. Antibod. Hybridomas, 3:81 85 (1992); Huse et al., Science, 246:1275 1281 (1989); Griffiths et al., EMBO J., 12:725 734 (1993).

Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art. The invention also is intended to cover human antibodies. Methods for production, isolation purification and use are known to those skilled in the art using standard methodologies.

Active immunization with Streptococcus mutans has been shown to induce protection against experimental dental caries. Protection results from continuous secretion of salivary antibody to Gbp-B. Also contemplated by the present application is the use of the peptides described herein for conferring passive immunity to a mammal by administration of antibodies directed to the peptides of the invention using the methods described by Smith et. al., Infect. and Immun. 69(5):3135 3142 (2001). Passive immunity and protection from Streptococcus mutans can result from administration of antibodies specific to Gbp-B peptides (e.g., SEQ ID NOS. 1 22) as described herein. Routes for administration include intravenous, intranasal, topical, and dietary, including the inclusion of the antibody in mouthwash, toothpaste or chewing gum. The administration of Gbp-B peptide antibodies can have an immunotherapeutic efficacy for dental caries by interfering with the accumulation of S. mutans in the biofilm and the subsequent events that cause dental caries.

The present invention further relates to a method of provoking an immune response to glucan binding protein or to glucosyltransferase in a mammal by administering an immunogenic or vaccine composition of the invention. Preferably, the immune response results in interference with glucan binding in the biofilm in mammals after administration of the vaccine composition. Alternatively, the immune response results in interference with the enzymatic activity of glucosyltransferase in mammals. The immune response elicited by the compositions and methods of the invention can be humoral or systemic; for example, the immune response can be a mucosal response. The immune response elicited by the method of the present invention results in reduction of the colonization or accumulation of mutans streptococcal strains in the mammal to which the vaccine or immunogenic composition is administered.

The compositions of the present invention are administered to any mammal in which the prevention and/or reduction of dental caries is desired. Suitable mammals include primates, humans, cats, dogs, mice, rats and other mammals in which it is desirable to inhibit dental caries. The present invention provides a vaccine that is useful for preventing, halting or reducing the progression of dental caries in a mammal to which the vaccine is administered.

In the method of the present invention of provoking an immune response to GbpB, mammals in which an immune response to GbpB is desired are given the vaccine or immunogenic compositions described herein. The compositions can be included in a formulation, which is administered to an individual being treated; such a formulation can also include a physiologically compatible carrier (e.g., a physiological buffer), stabilizers, flavorants, adjuvants and other components. The vaccine can be administered by a variety of routes (e.g., parenterally, mucosally, intranasally, intraocularly, intravenously, rectally, orally) and the components of the formulation will be selected accordingly. The amount to be administered and the frequency of administration can be determined empirically and will take into consideration the age and size of the mammal being treated and the stage of the dental caries disease (e.g., prior to colonization of mutans streptococci, soon after colonization of mutans streptococci or in later stages of colonization).

EXAMPLES

Example 1

Identification of Immunogenic Regions

Peptides presented in conjunction with class II MHC molecules were derived from GbpB that has been processed in the phagosome of the antigen processing cell. The peptides bind to MHC molecules on the surface of these cells in a linear fashion. The binding was determined by the interaction of the peptide's amino acid side chains with the binding pockets in the MHC molecule. The characteristics of peptides that are likely to bind to a given MHC were directly deduced from pooled sequencing data of MHC alleles, resulting in an estimated binding probability. Thus, in order to identify potential B cell epitopes within GbpB sequence, which can be used for design of subunit vaccines, a matrix-based algorithm for epitope prediction (EpiNatrix; EpiVax, Inc, Providence, R.I.) was used to search the primary amino acid sequence of GbpB for known MHC class II binding motifs.

The motif-matching algorithms analyzed the GbpB sequence against each MHC class II allele to indicate regions of sequence that contain clusters of binding motifs. Those sequences with sufficiently high estimated binding probabilities (EBP) were used to predict MHC ligands. FIG. 1 illustrates regions of predicted epitopes as the number of motif matches associated with a given sequence. Four regions within the expressed protein sequence were identified which had at least 6 matches within the N terminal region of the expressed protein sequence. One of these regions, beginning at residue 16, fell within the 27 residue signal peptide. Three other regions in the N terminal third of the molecule began at residue 62, residue 90 and residue 121. One peptide in the C terminal region, beginning with residue 369, had 5 matches. Independent analysis of other sets of known alleles also identified these as regions with higher estimated binding probabilities. These latter analyses also showed the 10-mer region following residue 322 to have more binding potential than predicted from the results shown in FIG. 1. Table 1 indicates the peptide sequences that were identified by this method.

TABLE-US-00017 TABLE 1 Amino Acid Sequence of GbpB Peptide SEQ ID NO: 113 KSNAATSYINAIINSKSVSD 132 SEQ ID NO: 1 KHKLITIQGQVSALQTQQAG SEQ ID NO: 2 306 TATEAQPSASSASTAAVAAN 325 SEQ ID NO: 3 6 LSAVLVSGVTLSSATTLSAV 25 SEQ ID NO: 4 16 LSSATTLSAVKADDFDAQIA 35 SEQ ID NO: 5 33 QIASQDSKINNLTAQQQAAQ 52 SEQ ID NO: 6 37 QDSKINNLTAQQQAAQAQVN 56 SEQ ID NO: 7 48 QQAAQAQVNTIQGQVSALQT 67 SEQ ID NO: 8 52 QAQVNTIQGQVSALQTQQAE 71 SEQ ID NO: 9 88 QQIQTLSSKIVARNESLKQQ 107 SEQ ID NO: 10 117 ATSYINAIINSKSVSDAINR 136 SEQ ID NO: 11 137 VSAIREVVSANEKMLQQQEQ 156 SEQ ID NO: 12 174 TVAANQETIAQNTNALNTQQ 193 SEQ ID NO: 13 194 AQLEAAQLNLQAELTTAQDQ 213 SEQ ID NO: 14 214 KATLVAQKAAAEEAARQAAA 233 SEQ ID NO: 15 248 ALQEQAAQAQVAANNNTQAT 267 SEQ ID NO: 16 289 TEQSAAQAVNNSDQESTTAT 308 SEQ ID NO: 17 311 QPSASSASTAAVAANTSSAN 330 SEQ ID NO: 18 349 GNYWGNGGQWAASAAAAGYR 368 SEQ ID NO: 19 365 AGYRVGSTPSAGAVAVWNDG 384 SEQ ID NO: 20 383 DGGYGHVAYVTGVQGGQIQV 402 SEQ ID NO: 21 403 QEANYAGNQSIGNYRGWFNP 422 SEQ ID NO: 22

Peptide Constructs

MAP constructs of three 20-mer peptides (SYI, QGQ, SAS), which included the predicted binding epitopes following residues 62, 121 and 322 were synthesized using the following peptides:

SYI (KSNAATSYINAIINSKSVSD; GbpB residues 113 132) (SEQ ID NO: 1) QGQ (QAQVNTIQGQVSALQTQQAE; GbpB residues 52 71) (SEQ ID NO: 9); and SAS (TATEAQPSASSASTAAVAAN; residues 306 325) (SEQ ID NO: 3).

The constructs (SYI, QGQ and SAS; SEQ ID NOs. 1, 3 and 9) were selected for synthesis and further analysis based on the estimated high MHC Class II binding probability identified in the matrix-based approach described above. Peptides were synthesized (Applied Diagnostics, Foster City, Calif.) using the stepwise solid phase method of Merrifield R. B., J. Amer. Chem. Soc. 85:2149 2154 (1963) on a core matrix of lysines to yield macromolecules with four peptides per molecule, after the method of Tam et al., PNAS USA 85:5409 5413 (1988). Synthesis was successful with two of the three peptides (SYI and QGQ). Purity (>90%) was assessed using HPLC, amino acid analysis, and molecular weight determination by mass spectrometry.

Glucan Binding Protein (GbpB)

GbpB was purified from S. mutans strain SJr by ion exchange chromatography on MONO-Q HR 5/5 (Pharmacia) in the presence of urea. Bacteria were cultivated in sucrose-free defined medium as previously described by Navarre and Schneewind in Mol. Microbiol. 14:115 121 (1994). GbpB prepared in this manner migrates as a single protein band in SDS-polyacrylamide gel electrophoresis.

ELISA

Serum IgG and salivary IgA antibodies were tested by enzyme-linked immunosorbent assay (ELISA). Polystyrene microtiter plates (Flow Laboratories) were coated with 2.5 mg/ml of SYI or QGQ or 0.5 mg/ml of S. mutans GbpB. Antibody activity was then measured by incubation with 1:400 and 1:4000 dilutions of sera, or 1:4 dilutions of saliva. Plates were then developed for IgG antibody with rabbit anti-rat IgG, followed in sequence by alkaline phosphatase goat anti-rabbit IgG (Biosource Inc.) and p-nitrophenylphosphate (Sigma Chemical Co., St. Louis, Mo.). A mouse monoclonal reagent to rat a chain (Zymed, South San Francisco, Calif.) was used with biotinylated goat anti-mouse IgG (Zymed), followed by avidin-alkaline phosphatase (ICN Biomedicals, Inc., Auroa, Ohio), followed by p-nitrophenylphosphate to reveal levels of salivary IgA antibody to peptides. Reactivity was recorded as absorbance (A405 nm) in a micro plate reader (Biotek Instruments, Winooski, Vt.). Data are reported as ELISA units (EU), which were calculated relative to the levels of appropriate reference sera or salivas from Sprague Dawley rats twice immunized with the respective peptide construct. Dilutions of sera producing an A405 nm of approximately 1.0 were considered 100 EU for serum IgG antibody measurements. Dilutions of saliva producing an A405 nm of approximately 0.8 were considered 100 EU for salivary IgA antibody.

Immunogenicity of Peptides

Sprague Dawley CD strain 45 day-old female rats (Charles River Laboratories, Wilmington, Mass.) were used for injection. Four groups of 6 rats/group were injected subcutaneously in the vicinity of the salivary glands with 50 .mu.g each of SYI or QGQ peptide constructs, or 10 .mu.g of GbpB, or sham-immunized with buffer alone. The initial injection included complete Freund adjuvant (CFA; Difco Laboratories, Detroit, Mich.); one subsequent injection 21 days later included incomplete FA. Animals were bled prior to injection and 14 days after the second injection. In this experiment, rats were first momentarily anesthetized with a gas mixture of 50% carbon dioxide and 50% oxygen, and then anesthetized by intra-peritoneal injection of a mixture (0.65 ml/kg) of 3 parts ketamine (Ketaset, 100 mg/ml, Fort Dodge Lab, Ft. Dodge, Iowa) and seven parts xylazine (Rompun, 20 mg/ml, Bayer Corp., Shawnee Mission, Kans.). Saliva secretion was stimulated by subcutaneous injection of 0.6 ml carbachol (containing 0.1 mg/ml in saline; Sigma Chemical Co., St. Louis, Mo.) per kilogram of rat weight. After fluid collection, rats were injected subcutaneously first with 0.1 ml/kg of atropine sulfate (0.4 mg/ml; American Pharmaceutical Partners, Inc., Los Angeles, Calif.) and then with yohimbine (yobine, 2.0 mg/ml; Lloyd Laboratories, Shenandoah, IO) at a volume equal to 1.4 times that used for anesthesia. Sera from coagulated and centrifuged blood were stored frozen at -20.degree. C. until measurement of antibody activity. Serum taken thirty-five days after the first injection was analyzed in ELISA for serum IgG antibody levels to each peptide construct and to GbpB (FIG. 2).

All rats injected with the QGQ peptide responded with high levels of serum antibody to the QGQ peptide, whereas no significant response to QGQ epitopes were seen in sham immunized rats or rats injected with SYI. Interestingly, the sera from two of the four rats injected with GbpB protein also reacted with QGQ.

All rats injected with the SYI peptide also demonstrated elevated levels of serum IgG antibody to the inciting SYI MAP peptide construct, in contrast to sham- or QGQ-injected rats. Again, serum IgG from one of the four rats injected with the parent GbpB protein also showed a significant reaction with the SYI peptide.

All sera were also evaluated in ELISA using plates coated with GbpB. Rats from SYI (6/6) or QGQ (4/6) peptide-injected groups reacted with the parent GbpB protein. Although the levels of serum IgG antibody from peptide-injected rats that were reactive with GbpB did not achieve levels from protein-injected rats, the overall response in the SYI-injected rats to native GbpB epitopes was significant. Taken together, these results supported the immunogenicity of these peptides predicted using the bioinformatics approach. Furthermore, they also suggested that the linear epitope(s) found especially on the SYI peptide construct were shared with those on the intact parent GbpB protein.

Protective Immunity

Peptides and multiple-epitope peptide constructs were tested in an art-recognized rat model for human dental caries. The SYI peptide was selected to test this assumption since this peptide induced more consistent immune responses reactive with GbpB than did the QGQ peptide.

Two groups (n=13/group) of 25 day-old Sprague-Dawley female rats were singly caged. Rats were subcutaneously (sc) injected in the salivary gland vicinity with 50 .mu.g of SYI MAP peptide construct or phosphate buffered saline (control animals). Antigen was incorporated with complete Freund's adjuvant (CFA). Nine days later, rats were reinjected with PBS or with SYI at the same dose in incomplete FA. Six days after the second injection, blood and saliva was collected under anesthesia described above. About fifteen days after the second injection, rats were placed in tubs (6 rats/tub), given diet 2000, and orally infected with approximately 10.sup.8 S. mutans SJ32 for 3 consecutive days. Rats were again singly caged after the infection protocol was completed and continued on diet 2000 for the duration of the experiment. Blood and saliva were collected 78 days after initial infection, followed by sacrifice. In preparation for the scoring of dental caries, rat skulls were defleshed by dermaphagic beetles, followed by a rinse with 70% ethanol.

Sera collected at the end of the 78 day infection period were analyzed for IgG and IgA antibody to both the peptide construct (FIG. 3) and to GbpB (FIG. 4). As expected, immunization with the peptide induced serum antibody in both isotypes to the inciting SYI peptide. Also, consistent with the previous experiment, SYI immunization also induced IgG antibody to intact GbpB in all rats, although some rats did not demonstrate serum IgA antibody levels to GbpB, at least at the dilutions tested. Saliva was collected prior to infection and at the end of the experiment was analyzed in ELISA for IgA antibody to SYI and GbpB (Table 2). Several (5/13) SYI-immunized rats demonstrated induction of salivary IgA antibody to both the peptide and the intact protein at either time point, although group levels were not significantly different under the conditions of measurement.

TABLE-US-00018 TABLE 2 Group Test Antigen Mean EU SE Sham-immunized GbpB 7.1 5.1 SYI-immunized GbpB 31.1 16.5 Sham-immunized SYI 3.6 2.4 SYI-immunized SYI 12.5 5.9

The protective response of the SYI immunization was evaluated by systematic swabbing of molar teeth for S. mutans infection (FIG. 5) and measurement of caries on molar surfaces (FIG. 6).

Bacterial Recoveries

The mutans streptococcal flora was assessed at 70 days after infection. After systematic swabbing of teeth, sonication, and plating appropriate dilutions on mitis salivarius agar (MS; total streptococci), and MS agar with 0.2 mg/ml streptomycin sulfate (MSS; Streptococcus mutans strain SJr), plates were incubated for 48 hours at 37.degree. C. in 90% N.sub.2, 10% CO.sub.2. S. mutans colony forming units (CFU) were then enumerated microscopically on MSS agar.

Caries Assessment

The extent and depth of carious lesions in all rat molar teeth (caries score) were microscopically evaluated by standard methods. Caries scores were determined separately on smooth and on occlusal dental surfaces. Thus, measurements of protective influence of immunization support the conservation of at least one epitope on SYI capable of inducing a caries-protective response in this model. The mean levels of infecting (streptomycin tolerant) S. mutans SJr recovered from SYI-immunized groups were lower than sham-immunized group recoveries both eight and 65 days after infection was initiated, although these differences did not achieve statistical significance at the p<0.05 level because of the variation in bacterial recoveries. The trend in the infection data was supported by measurements of dental caries. Caries scores on smooth (buccal) and occlusal surfaces as well as total caries scores of SYI-peptide immunized rats were significantly lower than those of sham-immunized and infected rats (FIG. 6).

Example 2

Diepitopic Immunization Studies

GTF and glucan binding protein B (GbpB) from mutans streptococci have each been implicated in the molecular pathogenesis of dental caries caused by these organisms. Native GTF and GbpB, as well as synthetic peptides derived from each protein, have been shown to induce protective immune responses to infection with cariogenic mutans streptococci in experimental models.

Two diepitopic synthetic peptide constructs were synthesized in a MAP format. Both peptides contained SYI, a 20-mer sequence from GbpB that bioinformatic analyses indicated was similar in sequence to an MHC class II binding peptide. One diepitopic peptide (SYI-CAT) also contained a 22-mer sequence from the catalytic domain of GTF. The other diepitopic construct (SYI-GLU) contained a 22-mer sequence from the glucan binding domain of GTF.

Diepitopic and monoepitopic MAP constructs were synthesized by AnaSpec, Inc. (San Jose, Calif.). Eight groups of Sprague-Dawley rats (n=4 8/group) were initially injected subcutaneously with one the following, together with complete Freund adjuvant: (1) buffer alone, (2) MAP-CAT, (3) MAP-GLU, (4) MAP-SYI, (5) MAP-CATGTF-SYIGbpB, (6) MAP-GLUGTF-SYIGbpB, (7) S. mutans GbpB, or (8) S. sobrinus GTF. On day 21, the 8 groups were again injected with the same contents, except the second injections substituted incomplete Freund adjuvant. Animals were then bled and salivated on days 42 and 63. Sera were tested for antibody activity against peptides and proteins using an alkaline phosphatase enzyme-linked immunosorbent assay (ELISA). Antibody levels were compared using one and two way ANOVA, followed by Dunn's multiple comparison test.

Sera from blood taken 42 days after the second injection were examined for IgG antibody activity against constituent peptides or native proteins. The serum IgG response to GLU was similar whether SYI-GLU or GLU alone was used for injection. In contrast, SYI-CAT induced an IgG response to CAT that was significantly higher than that induced by CAT alone. Both diepitopic peptide constructs induced IgG antibody that reacted with GTF and GbpB native proteins. Sera from SYI-CAT-immunized animals reacted with GTF to a significantly greater degree than SYI-GLU. These results indicate that diepitopic synthetic peptides, especially SYI-CAT, induce an immune response that provides a broader range of protective antibody epitopes in a subunit dental caries vaccine. Furthermore, these results indicate that the combination of SYI with CAT potentiated the immune response to this important GTF catalytic domain.

Sequences Used in Diepitopic Immunization Studies:

1. GTF-derived catalytic (CAT) peptide:

TABLE-US-00019 DANFDSIRVDAVDNVDADLLQI (SEQ ID NO: 25)

2. GTF-derived glucan binding (GLU) peptide:

TABLE-US-00020 TGAQTIKGQKLYFKANGQQVKG (SEQ ID NO: 23)

3. GbpB-derived MHC class II (SYI) peptide:

TABLE-US-00021 KSNAATSYINAIINSKSVSD (SEQ ID NO: 1)

4. Diepitopic SYI-CAT peptide, two copies of each in multiple antigenic peptide (MAP) format:

TABLE-US-00022 KSNAATSYINAIINSKSVSD- (SEQ ID NO:1) DANFDSIRVDAVDNVDADLLQI (SEQ ID NO:25)

5. Diepitopic SYI-GLU peptide, two copies of each in multiple antigenic peptide (MAP) format:

TABLE-US-00023 KSNAATSYINAIINSKSVSD- (SEQ ID NO:1) TGAQTIKGQKLYFKANGQQVKG (SEQ ID NO:23)

Results of Diepitopic Immunization Studies:

Sera were tested at a 1:200 dilution in groups of 4 7 rats.

Both diepitopic constructs induce significant antibody to Gbp-B (Table 3).

TABLE-US-00024 TABLE 3 Serum IgG responses to GBP-b (glucan binding protein B) Serum IgG antibody to GbpB Group Mean .+-. SE Sham 0.027 .+-. 0.014 SYI-CAT 0.783 .+-. 0.268 SYI-GLU 0.847 .+-. 0.186 SYI 0.599 .+-. 0.201 CAT 0.029 .+-. 0.009 GLU 0.022 .+-. 0.009 GluB 1.838 .+-. 0.052

The SYI-GLU diepitopic construct enhances anti-peptide (SYI) and anti-glucan binding protein responses (FIG. 7). Rats immunized with either diepitopic construct develop antibody to the parent GbpB protein (FIG. 8).

The SYI-CAT diepitopic construct significantly enhances the anti-peptide (CATI) responses over the mono-epitopic MAP (FIG. 10). Only the SYI-CAT diepitopic construct induced significant IgG antibody to the parent GTF protein in all rats (FIG. 11), and thus was the most efficient stimulus for antibody to both virulence antigens. Furthermore, the SYI-CAT diepitopic construct alone induced a significant serum IgG immune response to GTF in all animals (Table 4).

TABLE-US-00025 TABLE 4 Serum IgG responses to GTF Serum IgG antibody to GTF Group Mean + SE Sham 0.114 .+-. 0.029 SYI-CAT 0.955 .+-. 0.200 SYI-GLU 0.083 .+-. 0.018 SYI 0.073 .+-. 0.018 CAT 0.088 .+-. 0.018 GLU 0.108 .+-. 0.031 GTF 1.728 .+-. 0.098

The SYI-CAT construct induces significant levels of serum IgG antibody to both GbpB and GTF virulence antigens of mutans streptococci. In addition, the diepitopic construct enhanced the immune response to the CAT epitopes over that observed when monoepitopic CAT construct is used. Thus the SYI-CAT construct reduces the pathogenicity of Streptococcus mutans by inhibiting enzymatic activity (glucan formation) and inhibiting activity of glucan binding protein B.

All references cited herein are incorporated by reference in their entirety. While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Example 3

Immunogenicity of Glutamine-Rich Peptides from S. mutans GbpB

Two peptides with MHC class II binding characteristics were evaluated for their ability to induce serum and salivary antibodies. Two 20-mer MAP peptides were synthesized: QGQ from the N-terminal region (residues 52 71) and QAA from the central region (residues 252 270). In the first of 3 experiments, groups of 42 day-old rats (5 8/group) were either sham-immunized or injected with 60 .mu.g QAA, twice 21 days apart. Rats were bled and salivated on days 22, 63, and 83. In experiment 2, weanling rats (15/group) were sham-immunized or injected with 60 .mu.g QAA, or injected with 6 .mu.g GbpB, twice 13 days apart. After bleeding and salivation, rats were infected with S. mutans SJr and caries were measured 67 days later. In experiment 3, weanling rats (15/group) were sham-immunized, or injected with 60 .mu.g QGQ or injected with 6 .mu.g GbpB, twice 14 days apart; fluids were collected 8 days later. Antibody was measured by ELISA.

In experiments 1 and 2, sera from groups injected with QAA contained significant levels of IgG antibody to QAA (p<0.01). 3/8 rats (exp. 1) and 3/14 rats (exp. 2) had detectable antibody to GbpB. Salivary responses were delayed and seen in a minority of rats. No caries protection was observed. In contrast, QGQ (exp. 3) induced a rapid serum IgG response to QGQ. In addition, significant levels of serum (p<0.02) and salivary (p<0.03) antibody to GbpB were detected in QGQ-immunized rats. Therefore, epitope(s) in the QGQ sequence are superior to those in QAA for induction of systemic and mucosal antibody to GbpB.

Example 4

Caries Protection by Intranasal Immunization with S. mutans GbPB Peptide

SYI, a 20mer peptide from S. mutans glucan binding protein B (GbpB), has MHC class II binding characteristics. One group of weanling Sprague Dawley rats (n=13) were immunized subcutaneously with adjuvant when rats were 25 and 34 days old (sham). A second group (n=13) was immunized intranasally with 60 .mu.g SYI, mixed (immunization days 25 and 32) with or loaded (immunization day 39) in PLGA microparticles (IN-SYI). All intranasal immunizations were given with 5 .mu.g cholera toxin (CT). Nasal washes and salivas were collected on day 40. Mucosal IgA antibody to SYI<GbpB and CT was measured by ELISA. Beginning on day 45 all rats were orally infected with 10.sup.8 S. mutans SJr for three consecutive days. On day 98 rats were sacrificed, saliva and asal washes collected, and molars scored for dental caries.

All rats given SYI intranasally had demonstrable IgA antibody to CT in salivas and nasal washes prior to infection (p<0.001). Salivary IgA antibody to SYI could be detected in most peptide-imunized rats before infection. Subsequent studies revealed that SYI-loaded PLGA gave far higher salivary IgA responses to SYI and GbpB than did SYI mixed with PLGA. IN immunization with SYI resulted in significantly lower occlusal (p<0.01) and total (p<0.03) caries. Thus, protective immune response by salivary antibody was produced by mucosal application of a GbpB subunit vaccine.

Example 5

MHC Class II Alleles Bound to Glucosyltransferase Select Immunogenic Peptides

In order to select highly immunogenic peptides, 2 different quantitative matrices to predict MHC Class II binding regions in S. sobrinus GTF sequence. Fifty-one Class II alleles were assessed for binding to GTF allowing identification of promiscuous binding regions. Regions of GTF with defined functional relevance were also considered. Twenty candidate peptides (20mer) were selected, synthesized and tested for reactivity with serum IgG antibody obtained from rats hyperimmunized with GTF pool, (n=3) or naive control animals (n=3) by ELISA. Additionally, lymph node and spleen cells from GTF immunized once in CGA (n=2) or from a naive rat were restimulated with peptides in vitro to determine proliferative T cell responses.

Several regions of GTF were identified which were predicted to bind the majority of Class II alleles analyzed. A number of binding regions were conserved between the different GTFs of mutans streptococci. Serum antibody from GTF-immunized rats, but not naive animals, bound some of these peptides. In particular, peptides encompassing amino acids 478 497 and 847 866 demonstrated exceptional reactivity with anti-GTF sera, and also stimulated in vitro proliferation of lymph node and spleen cell cultures. ELISA analysis of human sera containing antibody to GTF also demonstrated reactivity against some of the same peptide sequences.

TABLE-US-00026 TABLE 20 Peptides of S. sobrinus GTF-I NNHVSIVEAWSDNDTPYLHDD (SEQ ID NO:42) VVIANNVDKFVSWGITDFEM (SEQ ID NO:43)

TABLE-US-00027 TABLE 21 Peptides of S. sobrinus GTF-U VTDSEANALAHISILEAWSL (SEQ ID NO:44) NNDADYTNKKIAENADFFKK (SEQ ID NO:45)

SEQUENCE LISTINGS

1

45 1 20 PRT Artificial GpbB-derived MHC class II (SYI) peptide 1 Lys Ser Asn Ala Ala Thr Ser Tyr Ile Asn Ala Ile Ile Asn Ser Lys 1 5 10 15 Ser Val Ser Asp 20 2 20 PRT Artificial GpbB peptide 2 Lys His Lys Leu Ile Thr Ile Gln Gly Gln Val Ser Ala Leu Gln Thr 1 5 10 15 Gln Gln Ala Gly 20 3 20 PRT Artificial GpbB peptide 3 Thr Ala Thr Glu Ala Gln Pro Ser Ala Ser Ser Ala Ser Thr Ala Ala 1 5 10 15 Val Ala Ala Asn 20 4 20 PRT Artificial GbpB peptide 4 Leu Ser Ala Val Leu Val Ser Gly Val Thr Leu Ser Ser Ala Thr Thr 1 5 10 15 Leu Ser Ala Val 20 5 20 PRT Artificial GbpB peptide 5 Leu Ser Ser Ala Thr Thr Leu Ser Ala Val Lys Ala Asp Asp Phe Asp 1 5 10 15 Ala Gln Ile Ala 20 6 20 PRT Artificial GbpB peptide 6 Gln Ile Ala Ser Gln Asp Ser Lys Ile Asn Asn Leu Thr Ala Gln Gln 1 5 10 15 Gln Ala Ala Gln 20 7 20 PRT Artificial GbpB peptide 7 Gln Asp Ser Lys Ile Asn Asn Leu Thr Ala Gln Gln Gln Ala Ala Gln 1 5 10 15 Ala Gln Val Asn 20 8 20 PRT Artificial GbpB peptide 8 Gln Gln Ala Ala Gln Ala Gln Val Asn Thr Ile Gln Gly Gln Val Ser 1 5 10 15 Ala Leu Gln Thr 20 9 20 PRT Artificial GbpB peptide 9 Gln Ala Gln Val Asn Thr Ile Gln Gly Gln Val Ser Ala Leu Gln Thr 1 5 10 15 Gln Gln Ala Glu 20 10 20 PRT Artificial GbpB peptide 10 Gln Gln Ile Gln Thr Leu Ser Ser Lys Ile Val Ala Arg Asn Glu Ser 1 5 10 15 Leu Lys Gln Gln 20 11 20 PRT Artificial GbpB peptide 11 Ala Thr Ser Tyr Ile Asn Ala Ile Ile Asn Ser Lys Ser Val Ser Asp 1 5 10 15 Ala Ile Asn Arg 20 12 20 PRT Artificial GbpB peptide 12 Val Ser Ala Ile Arg Glu Val Val Ser Ala Asn Glu Lys Met Leu Gln 1 5 10 15 Gln Gln Glu Gln 20 13 20 PRT Artificial GbpB peptide 13 Thr Val Ala Ala Asn Gln Glu Thr Ile Ala Gln Asn Thr Asn Ala Leu 1 5 10 15 Asn Thr Gln Gln 20 14 20 PRT Artificial GbpB peptide 14 Ala Gln Leu Glu Ala Ala Gln Leu Asn Leu Gln Ala Glu Leu Thr Thr 1 5 10 15 Ala Gln Asp Gln 20 15 20 PRT Artificial GbpB peptide 15 Lys Ala Thr Leu Val Ala Gln Lys Ala Ala Ala Glu Glu Ala Ala Arg 1 5 10 15 Gln Ala Ala Ala 20 16 20 PRT Artificial GbpB peptide 16 Ala Leu Gln Glu Gln Ala Ala Gln Ala Gln Val Ala Ala Asn Asn Asn 1 5 10 15 Thr Gln Ala Thr 20 17 20 PRT Artificial GbpB peptide 17 Thr Glu Gln Ser Ala Ala Gln Ala Val Asn Asn Ser Asp Gln Glu Ser 1 5 10 15 Thr Thr Ala Thr 20 18 20 PRT Artificial GbpB peptide 18 Gln Pro Ser Ala Ser Ser Ala Ser Thr Ala Ala Val Ala Ala Asn Thr 1 5 10 15 Ser Ser Ala Asn 20 19 20 PRT Artificial GbpB peptide 19 Gly Asn Tyr Trp Gly Asn Gly Gly Gln Trp Ala Ala Ser Ala Ala Ala 1 5 10 15 Ala Gly Tyr Arg 20 20 20 PRT Artificial GbpB peptide 20 Ala Gly Tyr Arg Val Gly Ser Thr Pro Ser Ala Gly Ala Val Ala Val 1 5 10 15 Trp Asn Asp Gly 20 21 20 PRT Artificial GbpB peptide 21 Asp Gly Gly Tyr Gly His Val Ala Tyr Val Thr Gly Val Gln Gly Gly 1 5 10 15 Gln Ile Gln Val 20 22 20 PRT Artificial GbpB peptide 22 Gln Glu Ala Asn Tyr Ala Gly Asn Gln Ser Ile Gly Asn Tyr Arg Gly 1 5 10 15 Trp Phe Asn Pro 20 23 22 PRT Artificial GTF-derived glucan binding (GLU) peptide 23 Thr Gly Ala Gln Thr Ile Lys Gly Gln Lys Leu Tyr Phe Lys Ala Asn 1 5 10 15 Gly Gln Gln Val Lys Gly 20 24 21 PRT Streptococcus mutans 24 Asp Ala Asn Phe Asp Ser Ile Arg Val Asp Ala Val Asp Asn Val Asp 1 5 10 15 Ala Asp Leu Leu Gln 20 25 22 PRT Artificial GTF-derived catalytic (CAT) peptide 25 Asp Ala Asn Phe Asp Ser Ile Arg Val Asp Ala Val Asp Asn Val Asp 1 5 10 15 Ala Asp Leu Leu Gln Ile 20 26 25 PRT Artificial Catalytic Domain GTF peptide 26 Pro Leu Asp Lys Arg Ser Gly Leu Asn Pro Leu Ile His Asn Ser Leu 1 5 10 15 Val Asp Arg Glu Val Asp Asp Arg Glu 20 25 27 20 PRT Artificial Glucan-Binding Domain GTF Peptide 27 Asp Gly Lys Leu Arg Tyr Tyr Asp Ala Asn Ser Gly Asp Gln Ala Phe 1 5 10 15 Asn Lys Ser Val 20 28 14 PRT Artificial Surface Domain GTF Peptide 28 Gln Trp Asn Gly Glu Ser Glu Lys Pro Tyr Asp Asp His Leu 1 5 10 29 431 PRT Streptococcus mutans 29 Met Lys Lys Arg Ile Leu Ser Ala Val Leu Val Ser Gly Val Thr Leu 1 5 10 15 Ser Ser Ala Thr Thr Leu Ser Ala Val Lys Ala Asp Asp Phe Asp Ala 20 25 30 Gln Ile Ala Ser Gln Asp Ser Lys Ile Asn Asn Leu Thr Ala Gln Gln 35 40 45 Gln Ala Ala Gln Ala Gln Val Asn Thr Ile Gln Gly Gln Val Ser Ala 50 55 60 Leu Gln Thr Gln Gln Ala Glu Leu Gln Ala Glu Asn Gln Arg Leu Glu 65 70 75 80 Ala Gln Ser Ala Thr Leu Gly Gln Gln Ile Gln Thr Leu Ser Ser Lys 85 90 95 Ile Val Ala Arg Asn Glu Ser Leu Lys Gln Gln Ala Arg Ser Ala Gln 100 105 110 Lys Ser Asn Ala Ala Thr Ser Tyr Ile Asn Ala Ile Ile Asn Ser Lys 115 120 125 Ser Val Ser Asp Ala Ile Asn Arg Val Ser Ala Ile Arg Glu Val Val 130 135 140 Ser Ala Asn Glu Lys Met Leu Gln Gln Gln Glu Gln Asp Lys Ala Ala 145 150 155 160 Val Glu Gln Lys Gln Gln Glu Asn Gln Ala Ala Ile Asn Thr Val Ala 165 170 175 Ala Asn Gln Glu Thr Ile Ala Gln Asn Thr Asn Ala Leu Asn Thr Gln 180 185 190 Gln Ala Gln Leu Glu Ala Ala Gln Leu Asn Leu Gln Ala Glu Leu Thr 195 200 205 Thr Ala Gln Asp Gln Lys Ala Thr Leu Val Ala Gln Lys Ala Ala Ala 210 215 220 Glu Glu Ala Ala Arg Gln Ala Ala Ala Ala Gln Ala Ala Ala Glu Ala 225 230 235 240 Lys Ala Ala Ala Glu Ala Lys Ala Leu Gln Glu Gln Ala Ala Gln Ala 245 250 255 Gln Val Ala Ala Asn Asn Asn Thr Gln Ala Thr Asp Ala Ser Asp Gln 260 265 270 Gln Ala Ala Ala Ala Asp Asn Thr Gln Ala Ala Gln Thr Gly Asp Ser 275 280 285 Thr Glu Gln Ser Ala Ala Gln Ala Val Asn Asn Ser Asp Gln Glu Ser 290 295 300 Thr Thr Ala Thr Glu Ala Gln Pro Ser Ala Ser Ser Ala Ser Thr Ala 305 310 315 320 Ala Val Ala Ala Asn Thr Ser Ser Ala Asn Thr Tyr Pro Ala Gly Gln 325 330 335 Cys Thr Trp Gly Val Lys Ser Leu Ala Pro Trp Val Gly Asn Tyr Trp 340 345 350 Gly Asn Gly Gly Gln Trp Ala Ala Ser Ala Ala Ala Ala Gly Tyr Arg 355 360 365 Val Gly Ser Thr Pro Ser Ala Gly Ala Val Ala Val Trp Asn Asp Gly 370 375 380 Gly Tyr Gly His Val Ala Tyr Val Thr Gly Val Gln Gly Gly Gln Ile 385 390 395 400 Gln Val Gln Glu Ala Asn Tyr Ala Gly Asn Gln Ser Ile Gly Asn Tyr 405 410 415 Arg Gly Trp Phe Asn Pro Gly Ser Val Ser Tyr Ile Tyr Pro Asn 420 425 430 30 431 PRT Streptococcus mutans 30 Met Lys Lys Arg Ile Leu Ser Ala Val Leu Val Ser Gly Val Thr Leu 1 5 10 15 Ser Ser Ala Thr Thr Leu Ser Ala Val Lys Ala Asp Asp Phe Asp Ala 20 25 30 Gln Ile Ala Ser Gln Asp Ser Lys Ile Asn Asn Leu Thr Ala Gln Gln 35 40 45 Gln Ala Ala Gln Ala Gln Val Asn Thr Ile Gln Gly Gln Val Ser Ala 50 55 60 Leu Gln Thr Gln Gln Ala Glu Leu Gln Ala Glu Asn Gln Arg Leu Glu 65 70 75 80 Ala Gln Ser Ala Thr Leu Gly Gln Gln Ile Gln Thr Leu Ser Ser Lys 85 90 95 Ile Val Ala Arg Asn Glu Ser Leu Lys Gln Gln Ala Arg Ser Ala Gln 100 105 110 Lys Ser Asn Ala Ala Thr Ser Tyr Ile Asn Ala Ile Ile Asn Ser Lys 115 120 125 Ser Val Ser Asp Ala Ile Asn Arg Val Ser Ala Ile Arg Glu Val Val 130 135 140 Ser Ala Asn Glu Lys Met Leu Gln Gln Gln Glu Gln Asp Lys Ala Ala 145 150 155 160 Val Glu Gln Lys Gln Gln Glu Asn Gln Ala Ala Ile Asn Thr Val Ala 165 170 175 Ala Asn Gln Glu Thr Ile Ala Gln Asn Thr Asn Ala Leu Asn Thr Gln 180 185 190 Gln Ala Gln Leu Glu Ala Ala Gln Leu Asn Leu Gln Ala Glu Leu Thr 195 200 205 Thr Ala Gln Asp Gln Lys Ala Thr Leu Val Ala Gln Lys Ala Ala Ala 210 215 220 Glu Glu Ala Ala Arg Gln Ala Ala Ala Ala Gln Ala Ala Ala Glu Ala 225 230 235 240 Lys Ala Ala Ala Glu Ala Lys Ala Leu Gln Glu Gln Ala Ala Gln Ala 245 250 255 Gln Ala Ala Ala Asn Asn Asn Thr Gln Ala Thr Asp Ala Ser Asp Gln 260 265 270 Gln Ala Ala Ala Ala Asp Asn Thr Gln Ala Ala Gln Thr Gly Asp Ser 275 280 285 Thr Glu Gln Ser Ala Ala Gln Ala Val Asn Asn Ser Asp Gln Glu Ser 290 295 300 Thr Thr Ala Thr Glu Ala Gln Pro Ser Ala Ser Ser Ala Ser Thr Ala 305 310 315 320 Ala Val Ala Ala Asn Thr Ser Ser Ala Asn Thr Tyr Pro Ala Gly Gln 325 330 335 Cys Thr Trp Gly Val Lys Ser Leu Ala Pro Trp Val Gly Asn Tyr Trp 340 345 350 Gly Asn Gly Gly Gln Trp Ala Ala Ser Ala Ala Ala Ala Gly Tyr Arg 355 360 365 Val Gly Ser Thr Pro Ser Ala Gly Ala Val Ala Val Trp Asn Asp Gly 370 375 380 Gly Tyr Gly His Val Ala Tyr Val Thr Gly Val Gln Gly Gly Gln Ile 385 390 395 400 Gln Val Gln Glu Ala Asn Tyr Ala Gly Asn Gln Ser Ile Gly Asn Tyr 405 410 415 Arg Gly Trp Phe Asn Pro Gly Ser Val Ser Tyr Ile Tyr Pro Asn 420 425 430 31 432 PRT Streptococcus mutans 31 Met Lys Lys Arg Ile Leu Ser Ala Val Leu Val Ser Gly Val Thr Leu 1 5 10 15 Ser Ser Ala Thr Thr Leu Ser Ala Ile Lys Ala Asp Asp Phe Asp Ala 20 25 30 Gln Ile Ala Ser Gln Asp Ser Lys Ile Asn Asn Leu Thr Ala Gln Gln 35 40 45 Gln Ala Ala Gln Ala Gln Val Asn Thr Ile Gln Gly Gln Val Ser Ala 50 55 60 Leu Gln Thr Gln Gln Ala Glu Leu Gln Ala Glu Asn Gln Arg Leu Glu 65 70 75 80 Ala Gln Ser Ala Thr Leu Gly Gln Gln Ile Gln Thr Leu Ser Ser Lys 85 90 95 Ile Val Ala Arg Asn Glu Ser Leu Lys Gln Gln Ala Arg Ser Ala Gln 100 105 110 Lys Ser Asn Ala Ala Thr Ser Tyr Ile Asn Ala Ile Ile Asn Ser Lys 115 120 125 Ser Val Ser Asp Ala Ile Asn Arg Val Ser Ala Ile Arg Glu Val Val 130 135 140 Ser Ala Asn Glu Lys Met Leu Gln Gln Gln Glu Gln Asp Lys Ala Ala 145 150 155 160 Val Glu Gln Lys Gln Gln Glu Asn Gln Ala Ala Ile Asn Thr Val Ala 165 170 175 Ala Asn Gln Glu Thr Ile Ala Gln Asn Thr Asn Ala Leu Asn Thr Gln 180 185 190 Gln Ala Gln Leu Glu Ala Ala Gln Leu Asn Leu Gln Ala Glu Leu Thr 195 200 205 Thr Ala Gln Asp Gln Lys Ala Thr Leu Val Ala Gln Lys Ala Ala Ala 210 215 220 Glu Glu Ala Ala Arg Gln Ala Ala Ala Ala Gln Ala Ala Ala Glu Ala 225 230 235 240 Lys Ala Ala Ala Glu Ala Lys Ala Leu Gln Glu Gln Ala Ala Gln Ala 245 250 255 Gln Ala Ala Ala Asn Asn Asn Asn Thr Gln Ala Thr Asp Ala Ser Asp 260 265 270 Gln Gln Ala Ala Ala Ala Asp Asn Thr Gln Ala Ala Gln Thr Gly Asp 275 280 285 Ser Thr Asp Gln Ser Ala Ala Gln Ala Val Asn Asn Ser Asp Gln Glu 290 295 300 Ser Thr Thr Ala Thr Ala Ala Gln Pro Ser Ala Ser Ser Ala Ser Thr 305 310 315 320 Ala Ala Val Ala Ala Asn Thr Ser Ser Ala Asn Thr Tyr Pro Ala Gly 325 330 335 Gln Cys Thr Trp Gly Val Lys Ser Leu Ala Pro Trp Val Gly Asn Tyr 340 345 350 Trp Gly Asn Gly Gly Gln Trp Ala Ala Ser Ala Ala Ala Ala Gly Tyr 355 360 365 Arg Val Gly Ser Thr Pro Ser Ala Gly Ala Val Ala Val Trp Asn Asp 370 375 380 Gly Gly Tyr Gly His Val Ala Tyr Val Thr Gly Val Gln Gly Gly Gln 385 390 395 400 Ile Gln Val Gln Glu Ala Asn Tyr Ala Gly Asn Gln Ser Ile Gly Asn 405 410 415 Tyr Arg Gly Trp Phe Asn Pro Gly Ser Val Ser Tyr Ile Tyr Pro Asn 420 425 430 32 432 PRT Streptococcus mutans 32 Met Lys Lys Arg Ile Leu Ser Ala Val Leu Val Ser Gly Val Thr Leu 1 5 10 15 Ser Ser Ala Thr Thr Leu Ser Ala Val Lys Ala Asp Asp Phe Asp Ala 20 25 30 Gln Ile Ala Ser Gln Asp Ser Lys Ile Asn Asn Leu Thr Ala Gln Gln 35 40 45 Gln Ala Ala Gln Ala Gln Val Asn Thr Ile Gln Gly Gln Val Ser Ala 50 55 60 Leu Gln Thr Gln Gln Ala Glu Leu Gln Ala Glu Asn Gln Arg Leu Glu 65 70 75 80 Ala Gln Ser Ala Thr Leu Gly Gln Gln Ile Gln Thr Leu Ser Ser Lys 85 90 95 Ile Val Ala Arg Asn Glu Ser Leu Lys Gln Gln Ala Arg Ser Ala Gln 100 105 110 Lys Ser Asn Ala Ala Thr Ser Tyr Ile Asn Ala Ile Ile Asn Ser Lys 115 120 125 Ser Val Ser Asp Ala Ile Asn Arg Val Ser Ala Ile Arg Glu Val Val 130 135 140 Ser Ala Asn Glu Lys Met Leu His Gln Gln Glu Gln Asp Lys Ala Ala 145 150 155 160 Val Glu Gln Lys His Gln Glu Asn Gln Ala Ala Ile Asn Thr Val Ala 165 170 175 Ala Asn Gln Glu Thr Ile Ala Gln Asn Thr Asn Ala Leu Asn Thr Gln 180 185 190 Gln Ala Gln Leu Glu Ala Ala Gln Leu Asn Leu Gln Ala Glu Leu Thr 195 200 205 Thr Ala Gln Asp Gln Lys Ala Thr Leu Val Ala Gln Lys Ala Ala Ala 210 215 220 Glu Glu Ala Ala Arg Gln Ala Ala Ala Ala Gln Ala Ala Ala Glu Ala 225 230 235 240 Lys Ala Ala Ala Glu Ala Lys Ala Leu Gln Glu Gln Ala Ala Gln Ala 245 250 255 Gln Ala Ala Ala Asn Asn Asn Asn Thr Gln Ala Thr Asp Ala Ser Asp 260 265 270 Gln Gln Ala Ala Ala Ala Asp Asn Thr Gln Ala Ala Gln Thr Gly Asp 275 280 285 Ser Thr Asp Gln Ser Ala Ala Gln Ala Val Asn Asn Ser Asp Gln Glu 290 295 300 Ser Thr Thr Ala Thr Ala Ala Gln Pro Ser Ala Ser Ser Ala Ser Thr 305 310 315 320 Ala Ala Val Ala Ala Asn Thr Ser Ser Ala Asn Thr Tyr Pro Ala Gly 325 330 335 Gln Cys Thr Trp Gly Val Lys Ser Leu Ala Pro Trp Val Gly Asn Tyr 340 345 350 Trp Gly Asn Gly Gly Gln Trp Ala Ala Ser Ala Ala Ala Ala Gly Tyr 355 360 365 Arg Val Gly Ser Thr Pro Ser Ala Gly Ala Val Ala Val Trp Asn Asp 370 375 380 Gly Gly Tyr Gly His Val Ala Tyr Val Thr Gly Val Gln Gly Gly Gln 385 390 395

400 Ile Gln Val Gln Glu Ala Asn Tyr Ala Gly Asn Gln Ser Ile Gly Asn 405 410 415 Tyr Arg Gly Trp Phe Asn Pro Gly Ser Val Ser Tyr Ile Tyr Pro Asn 420 425 430 33 431 PRT Streptococcus mutans 33 Met Lys Lys Arg Ile Leu Ser Ala Val Leu Val Ser Gly Val Thr Leu 1 5 10 15 Ser Ser Ala Thr Thr Leu Ser Ala Val Lys Ala Asp Asp Phe Asp Ala 20 25 30 Gln Ile Ala Ser Gln Asp Ser Lys Ile Asn Asn Leu Thr Ala Gln Gln 35 40 45 Gln Ala Ala Gln Ala Gln Val Asn Thr Ile Gln Gly Gln Val Ser Ala 50 55 60 Leu Gln Thr Gln Gln Ala Glu Leu Gln Ala Glu Asn Gln Arg Leu Glu 65 70 75 80 Ala Gln Ser Ala Thr Leu Gly Gln Gln Ile Gln Thr Leu Ser Ser Lys 85 90 95 Ile Val Ala Arg Asn Glu Ser Leu Lys Gln Gln Ala Arg Ser Ala Gln 100 105 110 Lys Ser Asn Ala Ala Thr Ser Tyr Ile Asn Ala Ile Ile Asn Ser Lys 115 120 125 Ser Val Ser Asp Ala Ile Asn Arg Val Ser Ala Ile Arg Glu Val Val 130 135 140 Ser Ala Asn Glu Lys Met Leu Gln Gln Gln Glu Gln Asp Lys Ala Ala 145 150 155 160 Val Glu Gln Lys Gln Gln Glu Asn Gln Ala Ala Ile Asn Thr Val Ala 165 170 175 Ala Asn Gln Glu Thr Ile Ala Gln Asn Thr Asn Ala Leu Asn Thr Gln 180 185 190 Gln Ala Gln Leu Glu Ala Ala Gln Leu Asn Leu Gln Ala Glu Leu Thr 195 200 205 Thr Ala Gln Asp Gln Lys Ala Thr Leu Val Ala Gln Lys Ala Ala Ala 210 215 220 Glu Glu Ala Ala Arg Gln Ala Ala Ala Ala Gln Ala Ala Ala Glu Ala 225 230 235 240 Lys Ala Ala Ala Glu Ala Lys Ala Leu Gln Glu Gln Ala Ala Gln Ala 245 250 255 Gln Ala Ala Ala Asn Asn Asn Thr Gln Ala Thr Asp Ala Ser Asp Gln 260 265 270 Gln Ala Ala Ala Ala Asp Asn Thr Gln Ala Ala Gln Thr Gly Asp Ser 275 280 285 Thr Glu Gln Ser Ala Ala Gln Ala Val Asn Asn Ser Asp Gln Glu Ser 290 295 300 Thr Thr Ala Thr Glu Ala Gln Pro Ser Ala Ser Ser Ala Ser Thr Ala 305 310 315 320 Val Val Thr Ala Asn Thr Ser Ser Ala Asn Thr Tyr Pro Ala Gly Gln 325 330 335 Cys Thr Trp Gly Val Lys Ser Leu Ala Pro Trp Val Gly Asn Tyr Trp 340 345 350 Gly Asn Gly Gly Gln Trp Ala Ala Ser Ala Ala Ala Ala Gly Tyr Arg 355 360 365 Val Gly Ser Thr Pro Ser Ala Gly Ala Val Ala Val Trp Asn Asp Gly 370 375 380 Gly Tyr Gly His Val Ala Tyr Val Thr Gly Val Gln Gly Gly Gln Ile 385 390 395 400 Gln Val Gln Glu Ala Asn Tyr Ala Gly Asn Gln Ser Ile Gly Asn Tyr 405 410 415 Arg Gly Trp Phe Asn Pro Gly Ser Val Ser Tyr Ile Tyr Pro Asn 420 425 430 34 1475 PRT Streptococcus mutans 34 Met Asp Lys Lys Val Arg Tyr Lys Leu Arg Lys Val Lys Lys Arg Trp 1 5 10 15 Val Thr Val Ser Val Ala Ser Ala Val Met Thr Leu Thr Thr Leu Ser 20 25 30 Gly Gly Leu Val Lys Ala Asp Ser Asn Glu Ser Lys Ser Gln Ile Ser 35 40 45 Asn Asp Ser Asn Thr Ser Val Val Thr Ala Asn Glu Glu Ser Asn Val 50 55 60 Ile Thr Glu Ala Thr Ser Lys Gln Glu Ala Ala Ser Ser Gln Thr Asn 65 70 75 80 His Thr Val Thr Thr Ser Ser Ser Ser Thr Ser Val Val Asn Pro Lys 85 90 95 Glu Val Val Ser Asn Pro Tyr Thr Val Gly Glu Thr Ala Ser Asn Gly 100 105 110 Glu Lys Leu Gln Asn Gln Thr Thr Thr Val Asp Lys Thr Ser Glu Ala 115 120 125 Ala Ala Asn Asn Ile Ser Lys Gln Thr Thr Glu Ala Asp Thr Asp Val 130 135 140 Ile Asp Asp Ser Asn Ala Ala Asn Leu Gln Ile Leu Glu Lys Leu Pro 145 150 155 160 Asn Val Lys Glu Ile Asp Gly Lys Tyr Tyr Tyr Tyr Asp Asn Asn Gly 165 170 175 Lys Val Arg Thr Asn Phe Thr Leu Ile Ala Asp Gly Lys Ile Leu His 180 185 190 Phe Asp Glu Thr Gly Ala Tyr Thr Asp Thr Ser Ile Asp Thr Val Asn 195 200 205 Lys Asp Ile Val Thr Thr Arg Ser Asn Leu Tyr Lys Lys Tyr Asn Gln 210 215 220 Val Tyr Asp Arg Ser Ala Gln Ser Phe Glu His Val Asp His Tyr Leu 225 230 235 240 Thr Ala Glu Ser Trp Tyr Arg Pro Lys Tyr Ile Leu Lys Asp Gly Lys 245 250 255 Thr Trp Thr Gln Ser Thr Glu Lys Asp Phe Arg Pro Leu Leu Met Thr 260 265 270 Trp Trp Pro Asp Gln Glu Thr Gln Arg Gln Tyr Val Asn Tyr Met Asn 275 280 285 Ala Gln Leu Gly Ile Asn Lys Thr Tyr Asp Asp Thr Ser Asn Gln Leu 290 295 300 Gln Leu Asn Ile Ala Ala Ala Thr Ile Gln Ala Lys Ile Glu Ala Lys 305 310 315 320 Ile Thr Thr Leu Lys Asn Thr Asp Trp Leu Arg Gln Thr Ile Ser Ala 325 330 335 Phe Val Lys Thr Gln Ser Ala Trp Asn Ser Asp Ser Glu Lys Pro Phe 340 345 350 Asp Asp His Leu Gln Asn Gly Ala Val Leu Tyr Asp Asn Glu Gly Lys 355 360 365 Leu Thr Pro Tyr Ala Asn Ser Asn Tyr Arg Ile Leu Asn Arg Thr Pro 370 375 380 Thr Asn Gln Thr Gly Lys Lys Asp Pro Arg Tyr Thr Ala Asp Asn Thr 385 390 395 400 Ile Gly Gly Tyr Glu Phe Leu Leu Ala Asn Asp Val Asp Asn Ser Asn 405 410 415 Pro Val Val Gln Ala Glu Gln Leu Asn Trp Leu His Phe Leu Met Asn 420 425 430 Phe Gly Asn Ile Tyr Ala Asn Asp Pro Asp Ala Asn Phe Asp Ser Ile 435 440 445 Arg Val Asp Ala Val Asp Asn Val Asp Ala Asp Leu Leu Gln Ile Ala 450 455 460 Gly Asp Tyr Leu Lys Ala Ala Lys Gly Ile His Lys Asn Asp Lys Ala 465 470 475 480 Ala Asn Asp His Leu Ser Ile Leu Glu Ala Trp Ser Asp Asn Asp Thr 485 490 495 Pro Tyr Leu His Asp Asp Gly Asp Asn Met Ile Asn Met Asp Asn Lys 500 505 510 Leu Arg Leu Ser Leu Leu Phe Ser Leu Ala Lys Pro Leu Asn Gln Arg 515 520 525 Ser Gly Met Asn Pro Leu Ile Thr Asn Ser Leu Val Asn Arg Thr Asp 530 535 540 Asp Asn Ala Glu Thr Ala Ala Val Pro Ser Tyr Ser Phe Ile Arg Ala 545 550 555 560 His Asp Ser Glu Val Gln Asp Leu Ile Ala Asp Ile Ile Lys Ala Glu 565 570 575 Ile Asn Pro Asn Val Val Gly Tyr Ser Phe Thr Met Glu Glu Ile Lys 580 585 590 Lys Ala Phe Glu Ile Tyr Asn Lys Asp Leu Leu Ala Thr Glu Lys Lys 595 600 605 Tyr Thr His Tyr Asn Thr Ala Leu Ser Tyr Ala Leu Leu Leu Thr Asn 610 615 620 Lys Ser Ser Val Pro Arg Val Tyr Tyr Gly Asp Met Phe Thr Asp Asp 625 630 635 640 Gly Gln Tyr Met Ala His Lys Thr Ile Asn Tyr Glu Ala Ile Glu Thr 645 650 655 Leu Leu Lys Ala Arg Ile Lys Tyr Val Ser Gly Gly Gln Ala Met Arg 660 665 670 Asn Gln Gln Val Gly Asn Ser Glu Ile Ile Thr Ser Val Arg Tyr Gly 675 680 685 Lys Gly Ala Leu Lys Ala Thr Asp Thr Gly Asp Arg Thr Thr Arg Thr 690 695 700 Ser Gly Val Ala Val Ile Glu Gly Asn Asn Pro Ser Leu Arg Leu Lys 705 710 715 720 Ala Ser Asp Arg Val Val Val Asn Met Gly Ala Ala His Lys Asn Gln 725 730 735 Ala Tyr Arg Pro Leu Leu Leu Thr Thr Asp Asn Gly Ile Lys Ala Tyr 740 745 750 His Ser Asp Gln Glu Ala Ala Gly Leu Val Arg Tyr Thr Asn Asp Arg 755 760 765 Gly Glu Leu Ile Phe Thr Ala Ala Asp Ile Lys Gly Tyr Ala Asn Pro 770 775 780 Gln Val Ser Gly Tyr Leu Gly Val Trp Val Pro Val Gly Ala Ala Leu 785 790 795 800 Ile Lys Met Phe Ala Leu Arg Leu Ala Arg Pro His Gln Gln Met Ala 805 810 815 Ser Val His Gln Asn Ala Ala Leu Asp Ser Arg Val Met Phe Glu Gly 820 825 830 Phe Ser Asn Phe Gln Ala Phe Ala Thr Lys Lys Glu Glu Tyr Thr Asn 835 840 845 Val Val Ile Ala Lys Asn Val Asp Lys Phe Ala Glu Trp Gly Val Thr 850 855 860 Asp Phe Glu Met Ala Pro Gln Tyr Val Ser Ser Thr Asp Gly Ser Phe 865 870 875 880 Leu Asp Ser Val Ile Gln Asn Gly Tyr Ala Phe Thr Asp Arg Tyr Asp 885 890 895 Leu Gly Ile Ser Lys Pro Asn Lys Tyr Gly Thr Ala Asp Asp Leu Val 900 905 910 Lys Ala Ile Lys Ala Leu His Ser Lys Gly Ile Lys Val Met Ala Asp 915 920 925 Trp Val Pro Asp Gln Met Tyr Ala Phe Pro Glu Lys Glu Val Val Thr 930 935 940 Ala Thr Arg Val Asp Lys Tyr Gly Thr Pro Val Ala Gly Ser Gln Ile 945 950 955 960 Lys Asn Thr Leu Tyr Val Val Asp Gly Lys Ser Ser Gly Lys Asp Gln 965 970 975 Gln Ala Lys Tyr Gly Gly Ala Phe Leu Glu Glu Leu Gln Ala Lys Tyr 980 985 990 Pro Glu Leu Phe Ala Arg Lys Gln Ile Ser Thr Gly Val Pro Met Asp 995 1000 1005 Pro Ser Val Lys Ile Lys Gln Trp Ser Ala Lys Tyr Phe Asn Gly 1010 1015 1020 Thr Asn Ile Leu Gly Arg Gly Ala Gly Tyr Val Leu Lys Asp Gln 1025 1030 1035 Ala Thr Asn Thr Tyr Phe Asn Ile Ser Asp Asn Lys Glu Ile Asn 1040 1045 1050 Phe Leu Pro Lys Thr Leu Leu Asn Gln Asp Ser Gln Val Gly Phe 1055 1060 1065 Ser Tyr Asp Gly Lys Gly Tyr Val Tyr Tyr Ser Thr Ser Gly Tyr 1070 1075 1080 Gln Ala Lys Asn Thr Phe Ile Ser Glu Gly Asp Lys Trp Tyr Tyr 1085 1090 1095 Phe Asp Asn Asn Gly Tyr Met Val Thr Gly Ala Gln Ser Ile Asn 1100 1105 1110 Gly Val Asn Tyr Tyr Phe Leu Ser Asn Gly Leu Gln Leu Arg Asp 1115 1120 1125 Ala Ile Leu Lys Asn Glu Asp Gly Thr Tyr Ala Tyr Tyr Gly Asn 1130 1135 1140 Asp Gly Arg Arg Tyr Glu Asn Gly Tyr Tyr Gln Phe Met Ser Gly 1145 1150 1155 Val Trp Arg His Phe Asn Asn Gly Glu Met Ser Val Gly Leu Thr 1160 1165 1170 Val Ile Asp Gly Gln Val Gln Tyr Phe Asp Glu Met Gly Tyr Gln 1175 1180 1185 Ala Lys Gly Lys Phe Val Thr Thr Ala Asp Gly Lys Ile Arg Tyr 1190 1195 1200 Phe Asp Lys Gln Ser Gly Asn Met Tyr Arg Asn Arg Phe Ile Glu 1205 1210 1215 Asn Glu Glu Gly Lys Trp Leu Tyr Leu Gly Glu Asp Gly Ala Ala 1220 1225 1230 Val Thr Gly Ser Gln Thr Ile Asn Gly Gln His Leu Tyr Phe Arg 1235 1240 1245 Ala Asn Gly Val Gln Val Lys Gly Glu Phe Val Thr Asp His His 1250 1255 1260 Gly Arg Ile Ser Tyr Tyr Asp Gly Asn Ser Gly Asp Gln Ile Arg 1265 1270 1275 Asn Arg Phe Val Arg Asn Ala Gln Gly Gln Trp Phe Tyr Phe Asp 1280 1285 1290 Asn Asn Gly Tyr Ala Val Thr Gly Ala Arg Thr Ile Asn Gly Gln 1295 1300 1305 Leu Leu Tyr Phe Arg Ala Asn Gly Val Gln Val Lys Gly Glu Phe 1310 1315 1320 Val Thr Asp Arg Tyr Gly Arg Ile Ser Tyr Tyr Asp Gly Asn Ser 1325 1330 1335 Gly Asp Gln Ile Arg Asn Arg Phe Val Arg Asn Ala Gln Gly Gln 1340 1345 1350 Trp Phe Tyr Phe Asp Asn Asn Gly Tyr Ala Val Thr Gly Ala Arg 1355 1360 1365 Thr Ile Asn Gly Gln His Leu Tyr Phe Arg Ala Asn Gly Val Gln 1370 1375 1380 Val Lys Gly Glu Phe Val Thr Asp Arg His Gly Arg Ile Ser Tyr 1385 1390 1395 Tyr Asp Gly Asn Ser Gly Asp Gln Ile Arg Asn Arg Phe Val Arg 1400 1405 1410 Asn Ala Gln Gly Gln Trp Phe Tyr Phe Asp Asn Asn Gly Tyr Ala 1415 1420 1425 Val Thr Gly Ala Arg Thr Ile Asn Gly Gln His Leu Tyr Phe Arg 1430 1435 1440 Ala Asn Gly Val Gln Val Lys Gly Glu Phe Val Thr Asp Arg Tyr 1445 1450 1455 Gly Arg Ile Ser Tyr Tyr Asp Ala Asn Ser Gly Glu Arg Val Arg 1460 1465 1470 Ile Asn 1475 35 1375 PRT Streptococcus mutans 35 Met Glu Lys Lys Val Arg Phe Lys Leu Arg Lys Val Lys Lys Arg Trp 1 5 10 15 Val Thr Val Ser Ile Ala Ser Ala Val Val Thr Leu Thr Ser Leu Ser 20 25 30 Gly Ser Leu Val Lys Ala Asp Ser Thr Asp Asp Arg Gln Gln Ala Val 35 40 45 Thr Glu Ser Gln Ala Ser Leu Val Thr Thr Ser Glu Ala Ala Lys Glu 50 55 60 Thr Leu Thr Ala Thr Asp Thr Ser Thr Ala Thr Ser Ala Thr Ser Gln 65 70 75 80 Pro Thr Ala Thr Val Thr Asp Asn Val Ser Thr Thr Asn Gln Ser Thr 85 90 95 Asn Thr Thr Ala Asn Thr Ala Asn Phe Val Val Lys Pro Thr Thr Thr 100 105 110 Ser Glu Gln Ala Lys Thr Asp Asn Ser Asp Lys Ile Ile Thr Thr Ser 115 120 125 Lys Ala Val Asn Arg Leu Thr Ala Thr Gly Lys Phe Val Pro Ala Asn 130 135 140 Asn Asn Thr Ala His Pro Lys Thr Val Thr Asp Lys Ile Val Pro Ile 145 150 155 160 Lys Pro Lys Ile Gly Lys Leu Lys Gln Pro Ser Ser Leu Ser Gln Asp 165 170 175 Asp Ile Ala Ala Leu Gly Asn Val Lys Asn Ile Arg Lys Val Asn Gly 180 185 190 Lys Tyr Tyr Tyr Tyr Lys Glu Asp Gly Thr Leu Gln Lys Asn Tyr Ala 195 200 205 Leu Asn Ile Asn Gly Lys Thr Phe Phe Phe Asp Glu Thr Gly Ala Leu 210 215 220 Ser Asn Asn Thr Leu Pro Ser Lys Lys Gly Asn Ile Thr Asn Asn Asp 225 230 235 240 Asn Thr Asn Ser Phe Ala Gln Tyr Asn Gln Val Tyr Ser Thr Asp Val 245 250 255 Ala Asn Phe Glu His Val Asp His Tyr Leu Thr Ala Glu Ser Trp Tyr 260 265 270 Arg Pro Lys Tyr Ile Leu Lys Asp Gly Lys Thr Trp Thr Gln Ser Thr 275 280 285 Glu Lys Asp Phe Arg Pro Leu Leu Met Thr Trp Trp Pro Asp Gln Glu 290 295 300 Thr Gln Arg Gln Tyr Val Asn Tyr Met Asn Ala Gln Leu Gly Ile His 305 310 315 320 Gln Thr Tyr Asn Thr Ala Thr Ser Pro Leu Gln Leu Asn Leu Ala Ala 325 330 335 Gln Thr Ile Gln Thr Lys Ile Glu Glu Lys Ile Thr Ala Glu Lys Asn 340 345 350 Thr Asn Trp Leu Arg Gln Thr Ile Ser Ala Phe Val Lys Thr Gln Ser 355 360 365 Ala Trp Asn Ser Asp Ser Glu Lys Pro Phe Asp Asp His Leu Gln Lys 370 375 380 Gly Ala Leu Leu Tyr Ser Asn Asn Ser Lys Leu Thr Ser Gln Ala Asn 385 390 395 400 Ser Asn Tyr Arg Ile Leu Asn Arg Thr Pro Thr Asn Gln Thr Gly Lys 405 410 415 Lys Asp Pro Arg Tyr Thr Ala Asp Arg Thr Ile Gly Gly Tyr Glu Phe 420 425 430 Leu Leu Ala Asn Asp Val Asp Asn Ser Asn Pro Val Val Gln Ala Glu 435 440 445 Gln Leu Asn Trp Leu His Phe Leu Met Asn Phe Gly Asn Ile Tyr Ala 450 455 460 Asn Asp Pro Asp Ala Asn Phe Asp Ser Ile Arg Val Asp Ala Val Asp 465 470 475 480 Asn Val Asp Ala Asp Leu Leu Gln Ile Ala

Gly Asp Tyr Leu Lys Ala 485 490 495 Ala Lys Gly Ile His Lys Asn Asp Lys Ala Ala Asn Asp His Leu Ser 500 505 510 Ile Leu Glu Ala Trp Ser Tyr Asn Asp Thr Pro Tyr Leu His Asp Asp 515 520 525 Gly Asp Asn Met Ile Asn Met Asp Asn Arg Leu Arg Leu Ser Leu Leu 530 535 540 Tyr Ser Leu Ala Lys Pro Leu Asn Gln Arg Ser Gly Met Asn Pro Leu 545 550 555 560 Ile Thr Asn Ser Leu Val Asn Arg Thr Asp Asp Asn Ala Glu Thr Ala 565 570 575 Ala Val Pro Ser Tyr Ser Phe Ile Arg Ala His Asp Ser Glu Val Gln 580 585 590 Asp Leu Ile Arg Asn Ile Ile Arg Thr Glu Ile Asn Pro Asn Val Val 595 600 605 Gly Tyr Ser Phe Thr Thr Glu Glu Ile Lys Lys Ala Phe Glu Ile Tyr 610 615 620 Asn Lys Asp Leu Leu Ala Thr Glu Lys Lys Tyr Thr His Tyr Asn Thr 625 630 635 640 Ala Leu Ser Tyr Ala Leu Leu Leu Thr Asn Lys Ser Ser Val Pro Arg 645 650 655 Val Tyr Tyr Gly Asp Met Phe Thr Asp Asp Gly Gln Tyr Met Ala His 660 665 670 Lys Thr Ile Asn Tyr Glu Ala Ile Glu Thr Leu Leu Lys Ala Arg Ile 675 680 685 Lys Tyr Val Ser Gly Gly Gln Ala Met Arg Asn Gln Gln Val Gly Asn 690 695 700 Ser Glu Ile Ile Thr Ser Val Arg Tyr Gly Lys Gly Ala Leu Lys Ala 705 710 715 720 Thr Asp Thr Gly Asp Arg Thr Thr Arg Thr Ser Gly Val Ala Val Ile 725 730 735 Glu Gly Asn Asn Pro Ser Leu Arg Leu Lys Ala Ser Asp Arg Val Val 740 745 750 Val Asn Met Gly Ala Ala His Lys Asn Gln Ala Tyr Arg Pro Leu Leu 755 760 765 Leu Thr Thr Asp Asn Gly Ile Lys Ala Tyr His Ser Asp Gln Glu Ala 770 775 780 Ala Gly Leu Val Arg Tyr Thr Asn Asp Arg Gly Glu Leu Ile Phe Thr 785 790 795 800 Ala Ala Asp Ile Lys Gly Tyr Ala Asn Pro Gln Val Ser Gly Tyr Leu 805 810 815 Gly Val Trp Val Pro Val Gly Ala Ala Ala Asp Gln Asp Val Arg Val 820 825 830 Ala Ala Ser Thr Ala Pro Ser Thr Asp Gly Lys Ser Val His Gln Asn 835 840 845 Ala Ala Leu Asp Ser Arg Val Met Phe Glu Gly Phe Ser Asn Phe Gln 850 855 860 Ala Phe Ala Thr Lys Lys Glu Glu Tyr Thr Asn Val Val Ile Ala Lys 865 870 875 880 Asn Val Asp Lys Phe Ala Glu Trp Gly Val Thr Asp Phe Glu Met Ala 885 890 895 Pro Gln Tyr Val Ser Ser Thr Asp Gly Ser Phe Leu Asp Ser Val Ile 900 905 910 Gln Asn Gly Tyr Ala Phe Thr Asp Arg Tyr Asp Leu Gly Ile Ser Lys 915 920 925 Pro Asn Lys Tyr Gly Thr Ala Asp Asp Leu Val Lys Ala Ile Lys Ala 930 935 940 Leu His Ser Lys Gly Ile Lys Val Met Ala Asp Trp Val Pro Asp Gln 945 950 955 960 Met Tyr Ala Leu Pro Glu Lys Glu Val Val Thr Ala Thr Arg Val Asp 965 970 975 Lys Tyr Gly Thr Pro Val Ala Gly Ser Gln Ile Lys Asn Thr Leu Tyr 980 985 990 Val Val Asp Gly Lys Ser Ser Gly Lys Asp Gln Gln Ala Lys Tyr Gly 995 1000 1005 Gly Ala Phe Leu Glu Glu Leu Gln Ala Lys Tyr Pro Glu Leu Phe 1010 1015 1020 Ala Arg Lys Gln Ile Ser Thr Gly Val Pro Met Asp Pro Ser Val 1025 1030 1035 Lys Ile Lys Gln Trp Ser Ala Lys Tyr Phe Asn Gly Thr Asn Ile 1040 1045 1050 Leu Gly Arg Gly Ala Gly Tyr Val Leu Lys Asp Gln Ala Thr Asn 1055 1060 1065 Thr Tyr Phe Ser Leu Val Ser Asp Asn Thr Phe Leu Pro Lys Ser 1070 1075 1080 Leu Val Asn Pro Asn His Gly Thr Ser Ser Ser Val Thr Gly Leu 1085 1090 1095 Val Phe Asp Gly Lys Gly Tyr Val Tyr Tyr Ser Thr Ser Gly Asn 1100 1105 1110 Gln Ala Lys Asn Ala Phe Ile Ser Leu Gly Asn Asn Trp Tyr Tyr 1115 1120 1125 Phe Asp Asn Asn Gly Tyr Met Val Thr Gly Ala Gln Ser Ile Asn 1130 1135 1140 Gly Ala Asn Tyr Tyr Phe Leu Ser Asn Gly Ile Gln Leu Arg Asn 1145 1150 1155 Ala Ile Tyr Asp Asn Gly Asn Lys Val Leu Ser Tyr Tyr Gly Asn 1160 1165 1170 Asp Gly Arg Arg Tyr Glu Asn Gly Tyr Tyr Leu Phe Gly Gln Gln 1175 1180 1185 Trp Arg Tyr Phe Gln Asn Gly Ile Met Ala Val Gly Leu Thr Arg 1190 1195 1200 Val His Gly Ala Val Gln Tyr Phe Asp Ala Ser Gly Phe Gln Ala 1205 1210 1215 Lys Gly Gln Phe Ile Thr Thr Ala Asp Gly Lys Leu Arg Tyr Phe 1220 1225 1230 Asp Arg Asp Ser Gly Asn Gln Ile Ser Asn Arg Phe Val Arg Asn 1235 1240 1245 Ser Lys Gly Glu Trp Phe Leu Phe Asp His Asn Gly Val Ala Val 1250 1255 1260 Thr Gly Thr Val Thr Phe Asn Gly Gln Arg Leu Tyr Phe Lys Pro 1265 1270 1275 Asn Gly Val Gln Ala Lys Gly Glu Phe Ile Arg Asp Ala Asn Gly 1280 1285 1290 Tyr Leu Arg Tyr Tyr Asp Pro Asn Ser Gly Asn Glu Val Arg Asn 1295 1300 1305 Arg Phe Val Arg Asn Ser Lys Gly Glu Trp Phe Leu Phe Asp His 1310 1315 1320 Asn Gly Ile Ala Val Thr Gly Ala Arg Val Val Asn Gly His Ala 1325 1330 1335 Ser Ile Leu Ser Leu Met Val Phe Arg Leu Arg Glu Ser Ser Leu 1340 1345 1350 Gln Ser Val Lys Val Val Ser Asn Thr Met Ile Leu Ile Pro Glu 1355 1360 1365 Met Lys Phe Val Ile Val Met 1370 1375 36 1430 PRT Streptococcus mutans 36 Met Glu Thr Lys Arg Arg Tyr Lys Met His Lys Val Lys Lys His Trp 1 5 10 15 Val Thr Val Ala Val Ala Ser Gly Leu Ile Thr Leu Gly Thr Thr Thr 20 25 30 Leu Gly Ser Ser Val Ser Ala Glu Thr Glu Gln Gln Thr Ser Asp Lys 35 40 45 Val Val Thr Gln Lys Ser Glu Asp Asp Lys Ala Ala Ser Glu Ser Ser 50 55 60 Gln Thr Asp Ala Pro Lys Thr Lys Gln Ala Gln Thr Glu Gln Thr Gln 65 70 75 80 Ala Gln Ser Gln Ala Asn Val Ala Asp Thr Ser Thr Ser Ile Thr Lys 85 90 95 Glu Thr Pro Ser Gln Asn Ile Thr Thr Gln Ala Asn Ser Asp Asp Lys 100 105 110 Thr Val Thr Asn Thr Lys Ser Glu Glu Ala Gln Thr Ser Glu Glu Arg 115 120 125 Thr Lys Gln Ser Glu Glu Ala Gln Thr Thr Ala Ser Ser Gln Ala Leu 130 135 140 Thr Gln Ala Lys Ala Glu Leu Thr Lys Gln Arg Gln Thr Ala Ala Gln 145 150 155 160 Glu Asn Lys Asn Pro Val Asp Leu Ala Ala Ile Pro Asn Val Lys Gln 165 170 175 Ile Asp Gly Lys Tyr Tyr Tyr Ile Gly Ser Asp Gly Gln Pro Lys Lys 180 185 190 Asn Phe Ala Leu Thr Val Asn Asn Lys Val Leu Tyr Phe Asp Lys Asn 195 200 205 Thr Gly Ala Leu Thr Asp Thr Ser Gln Tyr Gln Phe Lys Gln Gly Leu 210 215 220 Thr Lys Leu Asn Asn Asp Tyr Thr Pro His Asn Gln Ile Val Asn Phe 225 230 235 240 Glu Asn Thr Ser Leu Glu Thr Ile Asp Asn Tyr Val Thr Ala Asp Ser 245 250 255 Trp Tyr Arg Pro Lys Asp Ile Leu Lys Asn Gly Lys Thr Trp Thr Ala 260 265 270 Ser Ser Glu Ser Asp Leu Arg Pro Leu Leu Met Ser Trp Trp Pro Asp 275 280 285 Lys Gln Thr Gln Ile Ala Tyr Leu Asn Tyr Met Asn Gln Gln Gly Leu 290 295 300 Gly Thr Gly Glu Asn Tyr Thr Ala Asp Ser Ser Gln Glu Ser Leu Asn 305 310 315 320 Leu Ala Ala Gln Thr Val Gln Val Lys Ile Glu Thr Lys Ile Ser Gln 325 330 335 Thr Gln Gln Thr Gln Trp Leu Arg Asp Ile Ile Asn Ser Phe Val Lys 340 345 350 Thr Gln Pro Asn Trp Asn Ser Gln Thr Glu Ser Asp Thr Ser Ala Gly 355 360 365 Glu Lys Asp His Leu Gln Gly Gly Ala Leu Leu Tyr Ser Asn Ser Asp 370 375 380 Lys Thr Ala Tyr Ala Asn Ser Asp Tyr Arg Leu Leu Asn Arg Thr Pro 385 390 395 400 Thr Ser Gln Thr Gly Lys Pro Lys Tyr Phe Glu Asp Asn Ser Ser Gly 405 410 415 Gly Tyr Asp Phe Leu Leu Ala Asn Asp Ile Asp Asn Ser Asn Pro Val 420 425 430 Val Gln Ala Glu Gln Leu Asn Trp Leu His Tyr Leu Met Asn Tyr Gly 435 440 445 Ser Ile Val Ala Asn Asp Pro Glu Ala Asn Phe Asp Gly Val Arg Val 450 455 460 Asp Ala Val Asp Asn Val Asn Ala Asp Leu Leu Gln Ile Ala Ser Asp 465 470 475 480 Tyr Leu Lys Ala His Tyr Gly Val Asp Lys Ser Glu Lys Asn Ala Ile 485 490 495 Asn His Leu Ser Ile Leu Glu Ala Trp Ser Asp Asn Asp Pro Gln Tyr 500 505 510 Asn Lys Asp Thr Lys Gly Ala Gln Leu Pro Ile Asp Asn Lys Leu Arg 515 520 525 Leu Ser Leu Leu Tyr Ala Leu Thr Arg Pro Leu Glu Lys Asp Ala Ser 530 535 540 Asn Lys Asn Glu Ile Arg Ser Gly Leu Glu Pro Val Ile Thr Asn Ser 545 550 555 560 Leu Asn Asn Arg Ser Ala Glu Gly Lys Asn Ser Glu Arg Met Ala Asn 565 570 575 Tyr Ile Phe Ile Arg Ala His Asp Ser Glu Val Gln Thr Val Ile Ala 580 585 590 Lys Ile Ile Lys Ala Gln Ile Asn Pro Lys Thr Asp Gly Leu Thr Phe 595 600 605 Thr Leu Asp Glu Leu Lys Gln Ala Phe Lys Ile Tyr Asn Glu Asp Met 610 615 620 Arg Gln Ala Lys Lys Lys Tyr Thr Gln Ser Asn Ile Pro Thr Ala Tyr 625 630 635 640 Ala Leu Met Leu Ser Asn Lys Asp Ser Ile Thr Arg Leu Tyr Tyr Gly 645 650 655 Asp Met Tyr Ser Asp Asp Gly Gln Tyr Met Ala Thr Lys Ser Pro Tyr 660 665 670 Tyr Asp Ala Ile Asp Thr Leu Leu Lys Ala Arg Ile Lys Tyr Ala Ala 675 680 685 Gly Gly Gln Asp Met Lys Ile Thr Tyr Val Glu Gly Asp Lys Ser His 690 695 700 Met Asp Trp Asp Tyr Thr Gly Val Leu Thr Ser Val Arg Tyr Gly Thr 705 710 715 720 Gly Ala Asn Glu Ala Thr Asp Gln Gly Ser Glu Ala Thr Lys Thr Gln 725 730 735 Gly Met Ala Val Ile Thr Ser Asn Asn Pro Ser Leu Lys Leu Asn Gln 740 745 750 Asn Asp Lys Val Ile Val Asn Met Gly Ala Ala His Lys Asn Gln Glu 755 760 765 Tyr Arg Pro Leu Leu Leu Thr Thr Lys Asp Gly Leu Thr Ser Tyr Thr 770 775 780 Ser Asp Ala Ala Ala Lys Ser Leu Tyr Arg Lys Thr Asn Asp Lys Gly 785 790 795 800 Glu Leu Val Phe Asp Ala Ser Asp Ile Gln Gly Tyr Leu Asn Pro Gln 805 810 815 Val Ser Gly Tyr Leu Ala Val Trp Val Pro Val Gly Ala Ser Asp Asn 820 825 830 Gln Asp Val Arg Val Ala Ala Ser Asn Lys Ala Asn Ala Thr Gly Gln 835 840 845 Val Tyr Glu Ser Ser Ser Ala Leu Asp Ser Gln Leu Ile Tyr Glu Gly 850 855 860 Phe Ser Asn Phe Gln Asp Phe Val Thr Lys Asp Ser Asp Tyr Thr Asn 865 870 875 880 Lys Lys Ile Ala Gln Asn Val Gln Leu Phe Lys Ser Trp Gly Val Thr 885 890 895 Ser Phe Glu Met Ala Pro Gln Tyr Val Ser Ser Glu Asp Gly Ser Phe 900 905 910 Leu Asp Ser Ile Ile Gln Asn Gly Tyr Ala Phe Glu Asp Arg Tyr Asp 915 920 925 Leu Ala Met Ser Lys Asn Asn Lys Tyr Gly Ser Gln Gln Asp Met Ile 930 935 940 Asn Ala Val Lys Ala Leu His Lys Ser Gly Ile Gln Val Ile Ala Asp 945 950 955 960 Trp Val Pro Asp Gln Ile Tyr Asn Leu Pro Gly Lys Glu Val Val Thr 965 970 975 Ala Thr Arg Val Asn Asp Tyr Gly Glu Tyr Arg Lys Asp Ser Glu Ile 980 985 990 Lys Asn Thr Leu Tyr Ala Ala Asn Thr Lys Ser Asn Gly Lys Asp Tyr 995 1000 1005 Gln Ala Lys Tyr Gly Gly Ala Phe Leu Ser Glu Leu Ala Ala Lys 1010 1015 1020 Tyr Pro Ser Ile Phe Asn Arg Thr Gln Ile Ser Asn Gly Lys Lys 1025 1030 1035 Ile Asp Pro Ser Glu Lys Ile Thr Ala Trp Lys Ala Lys Tyr Phe 1040 1045 1050 Asn Gly Thr Asn Ile Leu Gly Arg Gly Val Gly Tyr Val Leu Lys 1055 1060 1065 Asp Asn Ala Ser Asp Lys Tyr Phe Glu Leu Lys Gly Asn Gln Thr 1070 1075 1080 Tyr Leu Pro Lys Gln Met Thr Asn Lys Glu Ala Ser Thr Gly Phe 1085 1090 1095 Val Asn Asp Gly Asn Gly Met Thr Phe Tyr Ser Thr Ser Gly Tyr 1100 1105 1110 Gln Ala Lys Asn Ser Phe Val Gln Asp Ala Lys Gly Asn Trp Tyr 1115 1120 1125 Tyr Phe Asp Asn Asn Gly His Met Val Tyr Gly Leu Gln Gln Leu 1130 1135 1140 Asn Gly Glu Val Gln Tyr Phe Leu Ser Asn Gly Val Gln Leu Arg 1145 1150 1155 Glu Ser Phe Leu Glu Asn Ala Asp Gly Ser Lys Asn Tyr Phe Gly 1160 1165 1170 His Leu Gly Asn Arg Tyr Ser Asn Gly Tyr Tyr Ser Phe Asp Asn 1175 1180 1185 Asp Ser Lys Trp Arg Tyr Phe Asp Ala Ser Gly Val Met Ala Val 1190 1195 1200 Gly Leu Lys Thr Ile Asn Gly Asn Thr Gln Tyr Phe Asp Gln Asp 1205 1210 1215 Gly Tyr Gln Val Lys Gly Ala Trp Ile Thr Gly Ser Asp Gly Lys 1220 1225 1230 Lys Arg Tyr Phe Asp Asp Gly Ser Gly Asn Met Ala Val Asn Arg 1235 1240 1245 Phe Ala Asn Asp Lys Asn Gly Asp Trp Tyr Tyr Leu Asn Ser Asp 1250 1255 1260 Gly Ile Ala Leu Val Gly Val Gln Thr Ile Asn Gly Lys Thr Tyr 1265 1270 1275 Tyr Phe Gly Gln Asp Gly Lys Gln Ile Lys Gly Lys Ile Ile Thr 1280 1285 1290 Asp Asn Gly Lys Leu Lys Tyr Phe Leu Ala Asn Ser Gly Glu Leu 1295 1300 1305 Ala Arg Asn Ile Phe Ala Thr Asp Ser Gln Asn Asn Trp Tyr Tyr 1310 1315 1320 Phe Gly Ser Asp Gly Val Ala Val Thr Gly Ser Gln Thr Ile Ala 1325 1330 1335 Gly Lys Lys Leu Tyr Phe Ala Ser Asp Gly Lys Gln Val Lys Gly 1340 1345 1350 Ser Phe Val Thr Tyr Asn Gly Lys Val His Tyr Tyr His Ala Asp 1355 1360 1365 Ser Gly Glu Leu Gln Val Asn Arg Phe Glu Ala Asp Lys Asp Gly 1370 1375 1380 Asn Trp Tyr Tyr Leu Asp Ser Asn Gly Glu Ala Leu Thr Gly Ser 1385 1390 1395 Gln Arg Ile Asn Asp Gln Arg Val Phe Phe Thr Arg Glu Gly Lys 1400 1405 1410 Gln Val Lys Gly Asp Val Ala Tyr Asp Glu Arg Arg Leu Leu Val 1415 1420 1425 Tyr Arg 1430 37 1590 PRT Streptococcus sobrinus 37 Met Glu Lys Asn Val Arg Phe Lys Met His Lys Val Lys Lys Arg Trp 1 5 10 15 Val Thr Leu Ser Val Ala Ser Ala Thr Met Leu Ala Ser Ala Leu Gly 20 25 30 Ala Ser Val Ala Ser Ala Asp Thr Asp Thr Ala Ser Asp Asp Ser Asn 35 40 45 Gln Ala Val Val Thr Gly Asp Gln Thr Thr Asn Asn Gln Ala Thr Asp 50 55 60 Gln Thr Ser Ile Ala Ala Thr Ala Thr Ser Glu Gln Ser Ala Ser Thr 65 70 75 80 Asp Ala Ala Thr Asp Gln Ala Ser Ala Ala Glu Gln Thr Gln Gly Thr 85 90 95 Thr Ala Ser Thr Asp Thr Ala

Ala Gln Thr Thr Thr Asn Ala Asn Glu 100 105 110 Ala Lys Trp Val Pro Thr Glu Asn Glu Asn Gln Gly Phe Thr Asp Glu 115 120 125 Met Leu Ala Glu Ala Lys Asn Val Ala Thr Ala Glu Ser Asp Ser Ile 130 135 140 Pro Ser Asp Leu Ala Lys Met Ser Asn Val Lys Gln Val Asp Gly Lys 145 150 155 160 Tyr Tyr Tyr Tyr Asp Gln Asp Gly Asn Val Lys Lys Asn Phe Ala Val 165 170 175 Ser Val Gly Asp Lys Ile Tyr Tyr Phe Asp Glu Thr Gly Ala Tyr Lys 180 185 190 Asp Thr Ser Lys Val Asp Ala Asp Lys Ser Ser Ser Ala Val Ser Gln 195 200 205 Asn Ala Thr Ile Phe Ala Ala Asn Asn Arg Ala Tyr Ser Thr Ser Ala 210 215 220 Lys Asn Phe Glu Ala Val Asp Asn Tyr Leu Thr Ala Asp Ser Trp Tyr 225 230 235 240 Arg Pro Lys Ser Ile Leu Lys Asp Gly Lys Thr Trp Thr Glu Ser Gly 245 250 255 Lys Asp Asp Phe Arg Pro Leu Leu Met Ala Trp Trp Pro Asp Thr Glu 260 265 270 Thr Lys Arg Asn Tyr Val Asn Tyr Met Asn Lys Val Val Gly Ile Asp 275 280 285 Lys Thr Tyr Thr Ala Glu Thr Ser Gln Ala Asp Leu Thr Ala Ala Ala 290 295 300 Glu Leu Val Gln Ala Arg Ile Glu Gln Lys Ile Thr Ser Glu Asn Asn 305 310 315 320 Thr Lys Trp Leu Arg Glu Ala Ile Ser Ala Phe Val Lys Thr Gln Pro 325 330 335 Gln Trp Asn Gly Glu Ser Glu Lys Pro Tyr Asp Asp His Leu Gln Asn 340 345 350 Gly Ala Leu Leu Phe Asp Asn Gln Thr Asp Leu Thr Pro Asp Thr Gln 355 360 365 Ser Asn Tyr Arg Leu Leu Asn Arg Thr Pro Thr Asn Gln Thr Gly Ser 370 375 380 Leu Asp Ser Arg Phe Thr Tyr Asn Pro Asn Asp Pro Leu Gly Gly Tyr 385 390 395 400 Asp Phe Leu Leu Ala Asn Asp Val Asp Asn Ser Asn Pro Val Val Gln 405 410 415 Ala Glu Gln Leu Asn Trp Leu His Tyr Leu Leu Asn Phe Gly Ser Ile 420 425 430 Tyr Ala Asn Asp Ala Asp Ala Asn Phe Asp Ser Ile Arg Val Asp Ala 435 440 445 Val Asp Asn Val Asp Ala Asp Leu Leu Gln Ile Ser Ser Asp Tyr Leu 450 455 460 Lys Ala Ala Tyr Gly Ile Asp Lys Asn Asn Lys Asn Ala Asn Asn His 465 470 475 480 Val Ser Ile Val Glu Ala Trp Ser Asp Asn Asp Thr Pro Tyr Leu His 485 490 495 Asp Asp Gly Asp Asn Leu Met Asn Met Asp Asn Lys Phe Arg Leu Ser 500 505 510 Met Leu Trp Ser Leu Ala Lys Pro Leu Asp Lys Arg Ser Gly Leu Asn 515 520 525 Pro Leu Ile His Asn Ser Leu Val Asp Arg Glu Val Asp Asp Arg Glu 530 535 540 Val Glu Thr Val Pro Ser Tyr Ser Phe Ala Arg Ala His Asp Ser Glu 545 550 555 560 Val Gln Asp Ile Ile Arg Asp Ile Ile Lys Ala Glu Ile Asn Pro Asn 565 570 575 Ser Phe Gly Tyr Ser Phe Thr Gln Glu Glu Ile Glu Gln Ala Phe Lys 580 585 590 Ile Tyr Asn Glu Asp Leu Lys Lys Thr Asp Lys Lys Tyr Thr His Tyr 595 600 605 Asn Val Pro Leu Ser Tyr Thr Leu Leu Leu Thr Asn Lys Gly Ser Ile 610 615 620 Pro Arg Val Tyr Tyr Gly Asp Met Phe Thr Asp Asp Gly Gln Tyr Met 625 630 635 640 Ala Asn Lys Thr Val Asn Tyr Asp Ala Ile Glu Ser Leu Leu Lys Ala 645 650 655 Arg Met Lys Tyr Val Ser Gly Gly Gln Ala Met Gln Asn Tyr Gln Ile 660 665 670 Gly Asn Gly Glu Ile Leu Thr Ser Val Arg Tyr Gly Lys Gly Ala Leu 675 680 685 Lys Gln Ser Asp Lys Gly Asp Ala Thr Thr Arg Thr Ser Gly Val Gly 690 695 700 Val Val Met Gly Asn Gln Pro Asn Phe Ser Leu Asp Gly Lys Val Val 705 710 715 720 Ala Leu Asn Met Gly Ala Ala His Ala Asn Gln Glu Tyr Arg Ala Leu 725 730 735 Met Val Ser Thr Lys Asp Gly Val Ala Thr Tyr Ala Thr Asp Ala Asp 740 745 750 Ala Ser Lys Ala Gly Leu Val Lys Arg Thr Asp Glu Asn Gly Tyr Leu 755 760 765 Tyr Phe Leu Asn Asp Asp Leu Lys Gly Val Ala Asn Pro Gln Val Ser 770 775 780 Gly Phe Leu Gln Val Trp Val Pro Val Gly Ala Ala Asp Asp Gln Asp 785 790 795 800 Ile Arg Val Ala Ala Ser Asp Thr Ala Ser Thr Asp Gly Lys Ser Leu 805 810 815 His Gln Asp Ala Ala Met Asp Ser Arg Val Met Phe Glu Gly Phe Ser 820 825 830 Asn Phe Gln Ser Phe Ala Thr Lys Glu Glu Glu Tyr Thr Asn Val Val 835 840 845 Ile Ala Asn Asn Val Asp Lys Phe Val Ser Trp Gly Ile Thr Asp Phe 850 855 860 Glu Met Ala Pro Gln Tyr Val Ser Ser Thr Asp Gly Gln Phe Leu Asp 865 870 875 880 Ser Val Ile Gln Asn Gly Tyr Ala Phe Thr Asp Arg Tyr Asp Leu Gly 885 890 895 Met Ser Lys Ala Asn Lys Tyr Gly Thr Ala Asp Gln Leu Val Lys Ala 900 905 910 Ile Lys Ala Leu His Ala Lys Gly Leu Lys Val Met Ala Asp Trp Val 915 920 925 Pro Asp Gln Met Tyr Thr Phe Pro Lys Gln Glu Val Val Thr Val Thr 930 935 940 Arg Thr Asp Lys Phe Gly Lys Pro Ile Ala Gly Ser Gln Ile Asn His 945 950 955 960 Ser Leu Tyr Val Thr Asp Thr Lys Ser Ser Gly Asp Asp Tyr Gln Ala 965 970 975 Lys Tyr Gly Gly Ala Phe Leu Asp Glu Leu Lys Glu Lys Tyr Pro Glu 980 985 990 Leu Phe Thr Lys Lys Gln Ile Ser Thr Gly Gln Ala Ile Asp Pro Ser 995 1000 1005 Val Lys Ile Lys Gln Trp Ser Ala Lys Tyr Phe Asn Gly Ser Asn 1010 1015 1020 Ile Leu Gly Arg Gly Ala Asp Tyr Val Leu Ser Asp Gln Val Ser 1025 1030 1035 Asn Lys Tyr Phe Asn Val Ala Ser Asp Thr Leu Phe Leu Pro Ser 1040 1045 1050 Ser Leu Leu Gly Lys Val Val Glu Ser Gly Ile Arg Tyr Asp Gly 1055 1060 1065 Lys Gly Tyr Ile Tyr Asn Ser Ser Ala Thr Gly Asp Gln Val Lys 1070 1075 1080 Ala Ser Phe Ile Thr Glu Ala Gly Asn Leu Tyr Tyr Phe Gly Lys 1085 1090 1095 Asp Gly Tyr Met Val Thr Gly Ala Gln Thr Ile Asn Gly Ala Asn 1100 1105 1110 Tyr Phe Phe Leu Glu Asn Gly Thr Ala Leu Arg Asn Thr Ile Tyr 1115 1120 1125 Thr Asp Ala Gln Gly Asn Ser His Tyr Tyr Ala Asn Asp Gly Lys 1130 1135 1140 Arg Tyr Glu Asn Gly Tyr Gln Gln Phe Gly Asn Asp Trp Arg Tyr 1145 1150 1155 Phe Lys Asp Gly Asn Met Ala Val Gly Leu Thr Thr Val Asp Gly 1160 1165 1170 Asn Val Gln Tyr Phe Asp Lys Asp Gly Val Gln Ala Lys Asp Lys 1175 1180 1185 Ile Ile Val Thr Arg Asp Gly Lys Val Arg Tyr Phe Asp Gln His 1190 1195 1200 Asn Gly Asn Ala Ala Thr Asn Thr Phe Ile Ala Asp Lys Thr Gly 1205 1210 1215 His Trp Tyr Tyr Leu Gly Lys Asp Gly Val Ala Val Thr Gly Ala 1220 1225 1230 Gln Thr Val Gly Lys Gln Lys Leu Tyr Phe Glu Ala Asn Gly Gln 1235 1240 1245 Gln Val Lys Gly Asp Phe Val Thr Ser Asp Glu Gly Lys Leu Tyr 1250 1255 1260 Phe Tyr Asp Val Asp Ser Gly Asp Met Trp Thr Asp Thr Phe Ile 1265 1270 1275 Glu Asp Lys Ala Gly Asn Trp Phe Tyr Leu Gly Lys Asp Gly Ala 1280 1285 1290 Ala Val Thr Gly Ala Gln Thr Ile Arg Gly Gln Lys Leu Tyr Phe 1295 1300 1305 Lys Ala Asn Gly Gln Gln Val Lys Gly Asp Ile Val Lys Gly Thr 1310 1315 1320 Asp Gly Lys Ile Arg Tyr Tyr Asp Ala Lys Ser Gly Glu Gln Val 1325 1330 1335 Phe Asn Lys Thr Val Lys Ala Ala Asp Gly Lys Thr Tyr Val Ile 1340 1345 1350 Gly Asn Asp Gly Val Ala Val Asp Pro Ser Val Val Lys Gly Gln 1355 1360 1365 Thr Phe Lys Asp Ala Ser Gly Ala Leu Arg Phe Tyr Asn Leu Lys 1370 1375 1380 Gly Gln Leu Val Thr Gly Ser Gly Trp Tyr Glu Thr Ala Asn His 1385 1390 1395 Asp Trp Val Tyr Ile Gln Ser Gly Lys Ala Leu Thr Gly Glu Gln 1400 1405 1410 Thr Ile Asn Gly Gln His Leu Tyr Phe Lys Glu Asp Gly His Gln 1415 1420 1425 Val Lys Gly Gln Leu Val Thr Gly Thr Asp Gly Lys Val Arg Tyr 1430 1435 1440 Tyr Asp Ala Asn Ser Gly Asp Gln Ala Phe Asn Lys Ser Val Thr 1445 1450 1455 Val Asn Gly Lys Thr Tyr Tyr Phe Gly Asn Asp Gly Thr Ala Gln 1460 1465 1470 Thr Ala Gly Asn Pro Lys Gly Gln Thr Phe Lys Asp Gly Ser Asp 1475 1480 1485 Ile Arg Phe Tyr Ser Met Glu Gly Gln Leu Val Thr Gly Ser Gly 1490 1495 1500 Trp Tyr Glu Asn Ala Gln Gly Gln Trp Leu Tyr Val Lys Asn Gly 1505 1510 1515 Lys Val Leu Thr Gly Leu Gln Thr Val Gly Ser Gln Arg Val Tyr 1520 1525 1530 Phe Asp Glu Asn Gly Ile Gln Ala Lys Gly Lys Ala Val Arg Thr 1535 1540 1545 Ser Asp Gly Lys Ile Arg Tyr Phe Asp Glu Asn Ser Gly Ser Met 1550 1555 1560 Ile Thr Asn Gln Trp Lys Phe Val Tyr Gly Gln Tyr Tyr Tyr Phe 1565 1570 1575 Gly Asn Asp Gly Ala Arg Ile Tyr Arg Gly Trp Asn 1580 1585 1590 38 1554 PRT Streptococcus sobrinus 38 Met Glu Lys Lys Leu His Tyr Lys Leu His Lys Val Lys Lys His Trp 1 5 10 15 Val Thr Ile Ala Val Ala Ser Ile Gly Leu Val Ser Leu Val Gly Ala 20 25 30 Gly Thr Val Ser Ala Glu Asp Lys Val Ala Asn Asp Thr Thr Ala Gln 35 40 45 Ala Thr Val Gly Val Asp Thr Gly Gln Asp Gln Ala Thr Thr Asn Asp 50 55 60 Ala Asn Thr Asn Thr Thr Asp Thr Asp Thr Ala Asp Gln Ser Ala Asn 65 70 75 80 Thr Asn Gln Asp Gln Ala Gly Ser Asp Gln Ser Asn Asn Gln Asp Gln 85 90 95 Ala Lys Gln Asp Thr Ala Asn Thr Asp Arg Asn Gln Ala Asp Asn Ser 100 105 110 Gln Thr Asp Asn Asn Gln Ala Thr Asp Gln Ala Thr Ser Pro Ala Thr 115 120 125 Asp Gly Thr Ser Val Gln Arg Arg Asp Ala Ala Asn Val Ala Thr Ala 130 135 140 Ala Asp Gln Glu Gly Gln Thr Ala Pro Ser Glu Gln Glu Lys Ser Ala 145 150 155 160 Ala Leu Ser Leu Asp Asn Val Lys Leu Ile Asp Gly Lys Tyr Tyr Tyr 165 170 175 Val Gln Ala Asp Gly Ser Tyr Lys Lys Asn Phe Ala Ile Thr Val Asn 180 185 190 Gly Gln Met Leu Tyr Phe Asp Ser Asp Thr Gly Ala Leu Ser Ser Thr 195 200 205 Ser Thr Tyr Ser Phe Ser Gln Gly Thr Thr Asn Leu Val Asp Asp Phe 210 215 220 Ser Ser His Asn Lys Ala Tyr Asp Ser Thr Ala Lys Ser Phe Glu Leu 225 230 235 240 Val Asn Gly Tyr Leu Thr Ala Asn Ser Trp Tyr Arg Pro Ala Gly Ile 245 250 255 Leu Arg Asn Gly Gln Thr Trp Glu Ala Ser Asn Glu Asn Asp Leu Arg 260 265 270 Pro Val Leu Met Ser Trp Trp Pro Asp Lys Asp Thr Gln Val Ala Tyr 275 280 285 Val Asn Tyr Met Asn Lys Tyr Leu Ser Ala Asn Glu Thr Glu Val Thr 290 295 300 Asn Glu Thr Ser Gln Val Asp Leu Asn Lys Glu Ala Gln Ser Ile Gln 305 310 315 320 Thr Lys Ile Glu Gln Lys Ile Thr Ser Asp Asn Ser Thr Gln Trp Leu 325 330 335 Arg Thr Ala Met Glu Ala Phe Val Ala Ala Gln Pro Lys Trp Asn Met 340 345 350 Ser Thr Glu Asn Phe Asn Lys Gly Asp His Leu Gln Gly Gly Ala Leu 355 360 365 Leu Tyr Thr Asn Ser Asp Leu Thr Pro Trp Ala Asn Ser Asp Tyr Arg 370 375 380 Leu Leu Asn Arg Thr Pro Thr Gln Gln Asp Gly Thr Lys Lys Tyr Phe 385 390 395 400 Thr Glu Gly Gly Glu Gly Gly Tyr Glu Phe Leu Leu Ser Asn Asp Val 405 410 415 Asp Asn Ser Asn Pro Val Val Gln Ala Glu Gln Leu Asn Gln Leu His 420 425 430 Tyr Leu Met Asn Trp Gly Asp Ile Val Met Gly Asp Lys Asp Ala Asn 435 440 445 Phe Asp Gly Val Arg Val Asp Ala Val Asp Asn Val Asn Ala Asp Leu 450 455 460 Leu Gln Val Tyr Ser Asn Tyr Phe Lys Asp Asn Tyr Lys Val Thr Asp 465 470 475 480 Ser Glu Ala Asn Ala Leu Ala His Ile Ser Ile Leu Glu Ala Trp Ser 485 490 495 Leu Asn Asp Asn Gln Tyr Asn Glu Asp Thr Asn Gly Thr Ala Leu Ser 500 505 510 Ile Asp Asn Ser Ser Arg Leu Thr Ser Leu Ala Val Leu Thr Lys Gln 515 520 525 Pro Gly Gln Arg Ile Asp Leu Ser Asn Leu Ile Ser Glu Ser Val Asn 530 535 540 Lys Glu Arg Ala Asn Asp Thr Ala Tyr Gly Asp Thr Ile Pro Thr Tyr 545 550 555 560 Ser Phe Val Arg Ala His Asp Ser Glu Val Gln Thr Val Ile Ala Lys 565 570 575 Ile Val Lys Glu Lys Ile Asp Thr Asn Ser Asp Gly Tyr Thr Phe Thr 580 585 590 Leu Asp Gln Leu Lys Asp Ala Phe Lys Ile Tyr Asn Glu Asp Met Ala 595 600 605 Lys Val Asn Lys Thr Tyr Thr His Tyr Asn Ile Pro Ala Ala Tyr Ala 610 615 620 Leu Leu Leu Ser Asn Met Glu Ser Val Pro Arg Val Tyr Tyr Gly Asp 625 630 635 640 Leu Tyr Thr Asp Asp Gly Gln Tyr Met Ala Lys Lys Ser Pro Tyr Tyr 645 650 655 Asp Ala Ile Ala Thr Met Leu Gln Gly Arg Ile Ala Tyr Val Ser Gly 660 665 670 Gly Gln Ser Glu Glu Val His Lys Val Asn Gly Asn Asn Gln Ile Leu 675 680 685 Ser Ser Val Arg Tyr Gly Gln Asp Leu Met Ser Ala Asp Asp Thr Gln 690 695 700 Gly Thr Asp Leu Ser Arg Thr Ser Gly Leu Val Thr Leu Val Ser Asn 705 710 715 720 Asp Pro Asn Leu Asp Leu Gly Gly Asp Ser Leu Thr Val Asn Met Gly 725 730 735 Arg Ala His Ala Asn Gln Ala Tyr Arg Pro Leu Ile Leu Gly Thr Lys 740 745 750 Asp Gly Val Gln Ser Tyr Leu Lys Asp Ser Asp Thr Asn Ile Val Lys 755 760 765 Tyr Thr Asp Ala Asn Gly Asn Leu Thr Phe Thr Ala Asp Asp Ile Lys 770 775 780 Gly Tyr Ser Thr Val Asp Met Ser Gly Tyr Leu Ala Val Trp Val Pro 785 790 795 800 Val Gly Ala Lys Asp Gly Gln Asp Val Arg Val Ala Ala Asp Thr Asn 805 810 815 Gln Lys Ala Asp Gly Lys Ser Leu Lys Thr Ser Ala Ala Leu Asp Ser 820 825 830 Gln Val Ile Tyr Glu Gly Phe Ser Asn Phe Gln Asp Phe Ala Asn Asn 835 840 845 Asp Ala Asp Tyr Thr Asn Lys Lys Ile Ala Glu Asn Ala Asp Phe Phe 850 855 860 Lys Lys Leu Gly Ile Thr Ser Phe Glu Met Ala Pro Gln Tyr Val Ser 865 870 875 880 Ala Thr Asp Gly Ser Phe Leu Asp Ser Ile Ile Gln Asn Gly Tyr Ala 885 890 895 Phe Ser Asp Arg Tyr Asp Leu Ala Met Ser Lys Asn Asn Lys Tyr Gly 900 905 910 Ser Lys Asp Asp Leu Ala Asn Ala Leu Lys Ala Leu His Ala Asn Gly 915 920 925 Ile Gln Ala Ile Ala Asp Trp Val Pro Asp Gln Ile Tyr Gln Leu Pro 930

935 940 Gly Glu Glu Val Val Thr Ala Lys Arg Thr Asn Ser Tyr Gly Asn Pro 945 950 955 960 Thr Phe Asp Ala Tyr Ile Asn Asn Ala Leu Tyr Ala Thr Asn Thr Lys 965 970 975 Ser Ser Gly Ser Asp Tyr Gln Ala Gln Tyr Gly Gly Ala Phe Leu Asp 980 985 990 Glu Leu Lys Ala Lys Tyr Pro Asp Met Phe Thr Val Asn Met Ile Ser 995 1000 1005 Thr Gly Lys Pro Ile Asp Pro Ser Thr Lys Ile Lys Gln Trp Glu 1010 1015 1020 Ala Lys Tyr Phe Asn Gly Thr Asn Val Leu Gly Lys Gly Ala Gly 1025 1030 1035 Tyr Val Leu Ser Asp Asp Ala Thr Gly Lys Tyr Phe Thr Val Asn 1040 1045 1050 Glu Asn Gly Asp Phe Leu Pro Ala Ser Phe Thr Gly Asp Gln Asn 1055 1060 1065 Ala Lys Thr Gly Phe Tyr Tyr Asp Gly Thr Gly Met Ala Tyr Tyr 1070 1075 1080 Ser Thr Ser Gly Asn Lys Ala Val Asn Ser Phe Ile Tyr Glu Gly 1085 1090 1095 Gly His Tyr Tyr Tyr Phe Asp Lys Asp Gly His Met Val Thr Gly 1100 1105 1110 Ser Tyr Lys Ala Glu Asp Gly Asn Asp Tyr Tyr Phe Leu Pro Asn 1115 1120 1125 Gly Ile Gln Met Arg Asp Ala Ile Tyr Gln Asp Ala Gln Gly Asn 1130 1135 1140 Ser Tyr Tyr Tyr Gly Arg Thr Gly Ile Leu Tyr Lys Gly Asp Asn 1145 1150 1155 Trp Tyr Pro Phe Val Asp Pro Asn Asn Ala Asn Lys Thr Val Phe 1160 1165 1170 Arg Tyr Phe Asp Ala Asn Asn Val Met Ala Ile Gly Tyr Arg Asn 1175 1180 1185 Met Tyr Gly Gln Thr Tyr Tyr Phe Asp Glu Asn Gly Phe Gln Ala 1190 1195 1200 Lys Gly Gln Leu Leu Thr Asp Asp Lys Gly Thr His Tyr Phe Asp 1205 1210 1215 Glu Asp Asn Gly Ala Met Ala Lys Asn Lys Phe Val Asn Val Gly 1220 1225 1230 Asp Asp Trp Tyr Tyr Met Asp Gly Asn Gly Asn Ala Val Lys Gly 1235 1240 1245 Gln Tyr Pro Val Asn Asn Gln Ile Leu Tyr Phe Asn Pro Glu Thr 1250 1255 1260 Gly Val Gln Val Lys Gly Gln Phe Ile Thr Asp Ala Gln Gly Arg 1265 1270 1275 Thr Ser Tyr Tyr Asp Ala Asn Ser Gly Ala Leu Lys Ser Ser Gly 1280 1285 1290 Phe Phe Thr Pro Asn Gly Ser Asp Trp Tyr Tyr Ala Glu Asn Gly 1295 1300 1305 Tyr Val Tyr Lys Gly Phe Lys Gln Val Ala Glu Asn Gln Asp Gln 1310 1315 1320 Trp Tyr Tyr Phe Asp Gln Thr Thr Gly Lys Gln Ala Lys Gly Ala 1325 1330 1335 Ala Lys Val Asp Gly Arg Asp Leu Tyr Phe Asn Pro Asp Ser Gly 1340 1345 1350 Val Gln Val Lys Gly Asp Phe Ala Thr Asp Glu Ser Gly Asn Thr 1355 1360 1365 Ser Phe Tyr His Gly Asp Asn Gly Asp Lys Val Val Gly Gly Phe 1370 1375 1380 Phe Thr Thr Gly Asn Asn Ala Trp Tyr Tyr Ala Asp Asn Asn Gly 1385 1390 1395 Asn Leu Val Lys Gly Phe Gln Glu Ile Asp Gly Lys Trp Tyr His 1400 1405 1410 Phe Asp Glu Val Thr Gly Gln Gln Ala Lys Gly Ala Ala Leu Val 1415 1420 1425 Asn Gly Gln Gln Leu Tyr Phe Asp Val Asp Ser Gly Ile Gln Val 1430 1435 1440 Lys Gly Asp Phe Val Thr Asp Gly Gln Gly Asn Thr Ser Tyr Tyr 1445 1450 1455 Asp Val Asn Ser Gly Asp Lys Lys Val Asn Gly Phe Phe Thr Thr 1460 1465 1470 Gly Asp Asn Ala Trp Tyr Tyr Ala Asp Gly Gln Gly Asn Leu Ala 1475 1480 1485 Lys Gly Arg Lys Ser Ile Asp Asn Gln Asp Leu Tyr Phe Asp Pro 1490 1495 1500 Ala Thr Gly Lys Gln Val Lys Gly Gln Leu Val Ser Ile Asp Gly 1505 1510 1515 Arg Asn Tyr Tyr Phe Asp Ser Gly Ser Gly Asn Met Ala Lys Asn 1520 1525 1530 Arg Phe Val Arg Ile Gly Asp Gln Trp Ile Tyr Phe Gly Asn Asp 1535 1540 1545 Gly Ala Ala Thr Asn Leu 1550 39 1365 PRT Streptococcus downei 39 Met Glu Lys Asn Leu Arg Tyr Lys Leu His Lys Val Lys Lys Gln Trp 1 5 10 15 Val Ala Ile Gly Val Thr Thr Val Thr Leu Ser Phe Leu Ala Gly Gly 20 25 30 Gln Val Val Ala Ala Asp Thr Asn Asn Asn Asp Gly Thr Ser Val Gln 35 40 45 Val Asn Lys Met Val Pro Ser Asp Pro Lys Phe Asp Ala Gln Ala Gln 50 55 60 Asn Gly Gln Leu Ala Gln Ala Met Phe Lys Ala Ala Asn Gln Ala Asp 65 70 75 80 Gln Thr Ala Thr Ser Gln Val Ser Pro Ala Thr Asp Gly Arg Val Asp 85 90 95 Asn Gln Val Thr Pro Ala Ala Asn Gln Pro Ala Ala Asn Val Ala Asn 100 105 110 Gln Asp Val Ala Asn Pro Ala Thr Asp Ala Gly Ala Leu Asn Arg Gln 115 120 125 Ser Ala Ala Asp Thr Ser Thr Asp Gly Lys Ala Val Pro Gln Thr Ser 130 135 140 Asp Gln Pro Gly His Leu Glu Thr Val Asp Gly Lys Thr Tyr Tyr Val 145 150 155 160 Asp Ala Asn Gly Gln Arg Leu Lys Asn Tyr Ser Met Val Ile Asp Gly 165 170 175 Lys Thr Tyr Tyr Phe Asp Gly Gln Thr Gly Glu Ala Gln Thr Asp Leu 180 185 190 Pro Lys Thr Gly Gln Ala Asn Gln Asp Asn Val Pro Asp Ser Tyr Gln 195 200 205 Ala Asn Asn Gln Ala Tyr Ser Asn Glu Ala Ser Ser Phe Glu Thr Val 210 215 220 Asp Asn Tyr Leu Thr Ala Asp Ser Trp Tyr Arg Pro Arg Lys Ile Leu 225 230 235 240 Lys Asn Gly Gln Ser Trp Gln Ala Ser Ser Glu Gly Asp Leu Arg Pro 245 250 255 Ile Leu Met Thr Trp Trp Pro Asp Ala Ala Thr Lys Ala Ala Tyr Ala 260 265 270 Asn Phe Trp Ala Lys Glu Gly Leu Ile Ser Gly Ser Tyr Arg Gln Asn 275 280 285 Ser Ala Asn Leu Asp Ala Ala Thr Gln Asn Ile Gln Ser Ala Ile Glu 290 295 300 Lys Lys Ile Ala Ser Glu Gly Asn Thr Asn Trp Leu Arg Asp Lys Met 305 310 315 320 Ser Gln Phe Val Lys Ser Gln Asn Gln Trp Ser Ile Ala Ser Glu Asn 325 330 335 Glu Thr Val Tyr Pro Asn Gln Asp His Met Gln Gly Gly Ala Leu Leu 340 345 350 Phe Ser Asn Ser Lys Asp Thr Glu His Ala Asn Ser Asp Trp Arg Leu 355 360 365 Leu Asn Arg Asn Pro Thr Phe Gln Thr Gly Lys Gln Lys Tyr Phe Thr 370 375 380 Thr Asn Tyr Ala Gly Tyr Glu Leu Leu Leu Ala Asn Asp Val Asp Asn 385 390 395 400 Ser Asn Pro Val Val Gln Ala Glu Gln Leu Asn His Leu His Tyr Leu 405 410 415 Met Asn Trp Gly Asp Ile Val Met Gly Asp Lys Asp Ala Asn Phe Asp 420 425 430 Gly Val Arg Val Asp Ala Val Asp Asn Val Asn Ala Asp Leu Leu Gln 435 440 445 Ile Gln Arg Asp Tyr Tyr Lys Ala Lys Tyr Gly Thr Asp Gln Asn Glu 450 455 460 Lys Asn Ala Ile Asp His Leu Ser Ile Leu Glu Ala Trp Ser Gly Asn 465 470 475 480 Asp Asn Asp Tyr Val Lys Asp Gln Asn Asn Phe Ser Leu Ser Ile Asp 485 490 495 Asn Asp Gln Arg Ser Gly Met Leu Lys Ala Phe Gly Tyr Ala Ser Ala 500 505 510 Tyr Arg Gly Asn Leu Ser Asn Leu Ala Thr Ala Gly Leu Lys Asn Arg 515 520 525 Ser Ala Asn Pro Asp Ser Asp Pro Val Pro Asn Tyr Val Phe Ile Arg 530 535 540 Ala His Asp Ser Glu Val Gln Thr Arg Ile Ala Lys Ile Ile Arg Glu 545 550 555 560 Lys Leu Gly Lys Thr Asn Ala Asp Gly Leu Thr Asn Leu Thr Leu Asp 565 570 575 Asp Leu Asn Lys Ala Phe Asp Ile Tyr Asn Gln Asp Met Asn Ala Thr 580 585 590 Asp Lys Val Tyr Tyr Pro Asn Asn Leu Pro Met Ala Tyr Ala Trp Met 595 600 605 Leu Gln Asn Lys Asp Thr Val Thr Arg Val Tyr Tyr Gly Asp Met Tyr 610 615 620 Thr Asp Asn Gly Gln Tyr Met Ala Thr Lys Thr Pro Phe Tyr Asn Ala 625 630 635 640 Ile Glu Thr Leu Leu Lys Gly Arg Ile Lys Tyr Val Ala Gly Gly Gln 645 650 655 Ala Val Ser Tyr Lys Gln Asp Trp Ser Ser Gly Ile Leu Thr Ser Val 660 665 670 Arg Tyr Gly Lys Gly Ala Asn Ser Ala Ser Asp Ala Gly Asn Thr Glu 675 680 685 Thr Arg Asn Ser Gly Met Ala Leu Leu Ile Asn Asn Arg Pro Asn Phe 690 695 700 Arg Ala Tyr Arg Asn Leu Thr Leu Asn Met Gly Ala Ala His Lys Ser 705 710 715 720 Gln Ala Tyr Arg Pro Leu Leu Leu Ser Thr Lys Asp Gly Ile Ala Thr 725 730 735 Tyr Leu Asn Asp Ser Asp Val Asp Ser Arg Gln Tyr Lys Tyr Thr Asp 740 745 750 Ser Gln Gly Asn Leu Ser Phe Ser Ala Ser Glu Leu Gln Ser Val Ala 755 760 765 Asn Ala Gln Val Ser Gly Met Ile Gln Val Trp Val Pro Val Gly Ala 770 775 780 Ala Asp Asn Gln Asp Val Arg Thr Ser Pro Ser Thr Gln Ala Thr Lys 785 790 795 800 Asp Gly Asn Ile Tyr His Gln Ser Asp Ala Leu Asp Ser Gln Val Ile 805 810 815 Tyr Glu Gly Phe Ser Asn Phe Gln Ala Phe Ala Gln Ser Pro Asp Gln 820 825 830 Tyr Thr Asn Ala Val Ile Ala Lys Asn Gly Asp Leu Phe Lys Ser Trp 835 840 845 Gly Ile Thr Gln Phe Glu Met Ala Pro Gln Tyr Val Ser Ser Glu Asp 850 855 860 Gly Thr Phe Leu Asp Ser Val Ile Leu Asn Gly Tyr Ala Phe Ser Asp 865 870 875 880 Arg Tyr Asp Leu Ala Met Ser Lys Asn Asn Lys Tyr Gly Ser Lys Gln 885 890 895 Asp Leu Ala Asn Ala Ile Lys Gly Leu Gln Ser Ala Gly Ile Lys Val 900 905 910 Leu Ser Asp Leu Val Pro Asn Gln Leu Tyr Asn Leu Pro Gly Lys Glu 915 920 925 Val Val Thr Ala Thr Arg Val Asn Gln Tyr Gly Gln Ala Lys Ser Gly 930 935 940 Ala Thr Ile Asn Lys Thr Pro Tyr Val Ala Asn Thr Arg Ser Tyr Gly 945 950 955 960 Asp Tyr Gln Glu Gln Tyr Gly Gly Lys Phe Leu Asp Asp Leu Gln Lys 965 970 975 Leu Tyr Pro Arg Leu Phe Ser Thr Lys Gln Ile Ser Thr Gly Lys Pro 980 985 990 Ile Asp Pro Ser Val Lys Ile Thr Asn Trp Ser Ala Lys Tyr Phe Asn 995 1000 1005 Gly Ser Asn Ile Leu Gly Arg Gly Ala Lys Tyr Val Leu Ser Glu 1010 1015 1020 Gly Asn Lys Tyr Leu Asn Leu Ala Asp Gly Lys Leu Phe Leu Pro 1025 1030 1035 Thr Val Leu Asn Asn Thr Tyr Gly Gln Pro Gln Val Ser Ala Asn 1040 1045 1050 Gly Phe Ile Ser Lys Asn Gly Gly Ile His Tyr Leu Asp Lys Asn 1055 1060 1065 Gly Gln Glu Val Lys Asn Arg Phe Lys Glu Ile Ser Gly Ser Trp 1070 1075 1080 Tyr Tyr Phe Asp Ser Asp Gly Lys Met Ala Thr Gly Lys Thr Lys 1085 1090 1095 Ile Gly Asn Asp Thr Tyr Leu Phe Met Pro Asn Gly Lys Gln Leu 1100 1105 1110 Lys Glu Gly Val Trp Tyr Asp Gly Lys Lys Ala Tyr Tyr Tyr Asp 1115 1120 1125 Asp Asn Gly Arg Thr Trp Thr Asn Lys Gly Phe Val Glu Phe Arg 1130 1135 1140 Val Asp Gly Gln Asp Lys Trp Arg Tyr Phe Asn Gly Asp Gly Thr 1145 1150 1155 Ile Ala Ile Gly Leu Val Ser Leu Asp Asn Arg Thr Leu Tyr Phe 1160 1165 1170 Asp Ala Tyr Gly Tyr Gln Val Lys Gly Gln Thr Val Thr Ile Asn 1175 1180 1185 Gly Lys Ser Tyr Thr Phe Asp Ala Asp Gln Gly Asp Leu Val Gln 1190 1195 1200 Thr Asp Asn Ala Asn Pro Ala Pro Gln Gly Gln Ala Gly Trp Lys 1205 1210 1215 Leu Leu Gly Asp Asn Gln Trp Gly Tyr Arg Lys Asp Gly Gln Leu 1220 1225 1230 Leu Thr Gly Glu Gln Thr Ile Asp Gly Gln Lys Val Phe Phe Gln 1235 1240 1245 Asp Asn Gly Val Gln Val Lys Gly Gly Thr Ala Thr Asp Ala Ser 1250 1255 1260 Gly Val Leu Arg Phe Tyr Asp Arg Asp Gln Gly His Gln Val Gly 1265 1270 1275 Lys Gly Trp Tyr Ser Thr Ser Asp Asp Asn Trp Val Tyr Val Asn 1280 1285 1290 Glu Ser Gly Gln Val Leu Thr Gly Leu Gln Thr Ile Asp Gly Gln 1295 1300 1305 Thr Val Tyr Phe Asp Asp Lys Gly Ile Gln Ala Lys Gly Lys Ala 1310 1315 1320 Val Trp Asp Glu Asn Gly Asn Leu Arg Tyr Phe Asp Ala Asp Ser 1325 1330 1335 Gly Asn Met Leu Arg Asp Arg Trp Lys Asn Val Asp Gly Asn Trp 1340 1345 1350 Tyr Tyr Phe Asn Arg Asn Gly Leu Ala Thr Arg Trp 1355 1360 1365 40 1518 PRT Streptococcus salivarius 40 Met Glu Asn Lys Ile His Tyr Lys Leu His Lys Val Lys Lys Gln Trp 1 5 10 15 Val Thr Ile Ala Val Ala Ser Val Ala Leu Ala Thr Val Leu Gly Gly 20 25 30 Leu Ser Val Thr Thr Ser Ser Val Ser Ala Asp Glu Thr Gln Asp Lys 35 40 45 Thr Val Thr Gln Ser Asn Ser Gly Thr Thr Ala Ser Leu Val Thr Ser 50 55 60 Pro Glu Ala Thr Lys Glu Ala Asp Lys Arg Thr Asn Thr Lys Glu Ala 65 70 75 80 Asp Val Leu Thr Pro Ala Lys Glu Thr Asn Ala Val Glu Thr Ala Thr 85 90 95 Thr Thr Asn Thr Gln Ala Thr Ala Glu Ala Ala Thr Thr Ala Thr Thr 100 105 110 Ala Asp Val Ala Val Ala Ala Val Pro Asn Lys Glu Ala Val Val Thr 115 120 125 Thr Asp Ala Pro Ala Val Thr Thr Glu Lys Ala Glu Glu Gln Pro Ala 130 135 140 Thr Val Lys Ala Glu Val Val Asn Thr Glu Val Lys Ala Pro Glu Ala 145 150 155 160 Ala Leu Lys Asp Ser Glu Val Glu Ala Ala Leu Ser Leu Lys Asn Ile 165 170 175 Lys Asn Ile Asp Gly Lys Tyr Tyr Tyr Val Asn Glu Asp Gly Ser His 180 185 190 Lys Glu Asn Phe Ala Ile Thr Val Asn Gly Gln Leu Leu Tyr Phe Gly 195 200 205 Lys Asp Gly Ala Leu Thr Ser Ser Ser Thr Tyr Ser Phe Thr Pro Gly 210 215 220 Thr Thr Asn Ile Val Asp Gly Phe Ser Ile Asn Asn Arg Ala Tyr Asp 225 230 235 240 Ser Ser Glu Ala Ser Phe Glu Leu Ile Asp Gly Tyr Leu Thr Ala Asp 245 250 255 Ser Trp Tyr Arg Pro Ala Ser Ile Ile Lys Asp Gly Val Thr Trp Gln 260 265 270 Ala Ser Thr Ala Glu Asp Phe Arg Pro Leu Leu Met Ala Trp Trp Pro 275 280 285 Asn Val Asp Thr Gln Val Asn Tyr Leu Asn Tyr Met Ser Lys Val Phe 290 295 300 Asn Leu Asp Ala Lys Tyr Ser Ser Thr Asp Lys Gln Glu Thr Leu Lys 305 310 315 320 Val Ala Ala Lys Asp Ile Gln Ile Lys Ile Glu Gln Lys Ile Gln Ala 325 330 335 Glu Lys Ser Thr Gln Trp Leu Arg Glu Thr Ile Ser Ala Phe Val Lys 340 345 350 Thr Gln Pro Gln Trp Asn Lys Glu Thr Glu Asn Tyr Ser Lys Gly Gly 355 360 365 Gly Glu Asp His Leu Gln Gly Gly Ala Leu Leu Tyr Val Asn Asp Ser 370 375 380 Arg Thr Pro Trp Ala Asn Ser Asp Tyr Arg Arg Leu Asn Arg Thr Ala 385 390 395 400 Thr Asn Gln Thr Gly Thr Ile Asp Lys Ser Ile Leu Asp Glu Gln Ser 405 410 415 Asp Pro Asn His Met Gly Gly Phe Asp Phe Leu Leu Ala Asn Asp Val 420 425 430 Asp Leu Ser Asn Pro Val Val

Gln Ala Glu Gln Leu Asn Gln Ile His 435 440 445 Tyr Leu Met Asn Trp Gly Ser Ile Val Met Gly Asp Lys Asp Ala Asn 450 455 460 Phe Asp Gly Ile Arg Val Asp Ala Val Asp Asn Val Asp Ala Asp Met 465 470 475 480 Leu Gln Leu Tyr Thr Asn Tyr Phe Arg Glu Tyr Tyr Gly Val Asn Lys 485 490 495 Ser Glu Ala Asn Ala Leu Ala His Ile Ser Val Leu Glu Ala Trp Ser 500 505 510 Leu Asn Asp Asn His Tyr Asn Asp Lys Thr Asp Gly Ala Ala Leu Ala 515 520 525 Met Glu Asn Lys Gln Arg Leu Ala Leu Leu Phe Ser Leu Ala Lys Pro 530 535 540 Ile Lys Glu Arg Thr Pro Ala Val Ser Pro Leu Tyr Asn Asn Thr Phe 545 550 555 560 Asn Thr Thr Gln Arg Asp Glu Lys Thr Asp Trp Ile Asn Lys Asp Gly 565 570 575 Ser Lys Ala Tyr Asn Glu Asp Gly Thr Val Lys Gln Ser Thr Ile Gly 580 585 590 Lys Tyr Asn Glu Lys Tyr Gly Asp Ala Ser Gly Asn Tyr Val Phe Ile 595 600 605 Arg Ala His Asp Asn Asn Val Gln Asp Ile Ile Ala Glu Ile Ile Lys 610 615 620 Lys Glu Ile Asn Pro Lys Ser Asp Gly Phe Thr Ile Thr Asp Ala Glu 625 630 635 640 Met Lys Gln Ala Phe Glu Ile Tyr Asn Lys Asp Met Leu Ser Ser Asp 645 650 655 Lys Lys Tyr Thr Leu Asn Asn Ile Pro Ala Ala Tyr Ala Val Met Leu 660 665 670 Gln Asn Met Glu Thr Ile Thr Arg Val Tyr Tyr Gly Asp Leu Tyr Thr 675 680 685 Asp Asp Gly His Tyr Met Glu Thr Lys Ser Pro Tyr Tyr Asp Thr Ile 690 695 700 Val Asn Leu Met Lys Ser Arg Ile Lys Tyr Val Ser Gly Gly Gln Ala 705 710 715 720 Gln Arg Ser Tyr Trp Leu Pro Thr Asp Gly Lys Met Asp Asn Ser Asp 725 730 735 Val Glu Leu Tyr Arg Thr Asn Glu Val Tyr Thr Ser Val Arg Tyr Gly 740 745 750 Lys Asp Ile Met Thr Ala Asn Asp Thr Glu Gly Ser Lys Tyr Ser Arg 755 760 765 Thr Ser Gly Gln Val Thr Leu Val Ala Asn Asn Pro Lys Leu Asn Leu 770 775 780 Asp Gln Ser Ala Lys Leu Asn Val Glu Met Gly Lys Ile His Ala Asn 785 790 795 800 Gln Lys Tyr Arg Ala Leu Ile Val Gly Thr Ala Asp Gly Ile Lys Asn 805 810 815 Phe Thr Ser Asp Ala Asp Ala Ile Ala Ala Gly Tyr Val Lys Glu Thr 820 825 830 Asp Ser Asn Gly Val Leu Thr Phe Gly Ala Asn Asp Ile Lys Gly Tyr 835 840 845 Glu Thr Phe Asp Met Ser Gly Phe Val Ala Val Trp Val Pro Val Gly 850 855 860 Ala Ser Asp Asn Gln Asp Ile Arg Val Ala Pro Ser Thr Glu Ala Lys 865 870 875 880 Lys Glu Gly Glu Leu Thr Leu Lys Ala Thr Glu Ala Tyr Asp Ser Gln 885 890 895 Leu Ile Tyr Glu Gly Phe Ser Asn Phe Gln Thr Ile Pro Asp Gly Ser 900 905 910 Asp Pro Ser Val Tyr Thr Asn Arg Lys Ile Ala Glu Asn Val Asp Leu 915 920 925 Phe Lys Ser Trp Gly Val Thr Ser Phe Glu Met Ala Pro Gln Phe Val 930 935 940 Ser Ala Asp Asp Gly Thr Phe Leu Asp Ser Val Ile Gln Asn Gly Tyr 945 950 955 960 Ala Phe Ala Asp Arg Tyr Asp Leu Ala Met Ser Lys Asn Asn Lys Tyr 965 970 975 Gly Ser Lys Glu Asp Leu Arg Asp Ala Leu Lys Ala Leu His Lys Ala 980 985 990 Gly Ile Gln Ala Ile Ala Asp Trp Val Pro Asp Gln Ile Tyr Gln Leu 995 1000 1005 Pro Gly Lys Glu Val Val Thr Ala Thr Arg Thr Asp Gly Ala Gly 1010 1015 1020 Arg Lys Ile Ala Asp Ala Ile Ile Asp His Ser Leu Tyr Val Ala 1025 1030 1035 Asn Ser Lys Ser Ser Gly Lys Asp Tyr Gln Ala Lys Tyr Gly Gly 1040 1045 1050 Glu Phe Leu Ala Glu Leu Lys Ala Lys Tyr Pro Glu Met Phe Lys 1055 1060 1065 Val Asn Met Ile Ser Thr Gly Lys Pro Ile Asp Asp Ser Val Lys 1070 1075 1080 Leu Lys Gln Trp Lys Ala Glu Tyr Phe Asn Gly Thr Asn Val Leu 1085 1090 1095 Glu Arg Gly Val Gly Tyr Val Leu Ser Asp Glu Ala Thr Gly Lys 1100 1105 1110 Tyr Phe Thr Val Thr Lys Glu Gly Asn Phe Ile Pro Leu Gln Leu 1115 1120 1125 Thr Gly Lys Glu Lys Val Ile Thr Gly Phe Ser Ser Asp Gly Lys 1130 1135 1140 Gly Ile Thr Tyr Phe Gly Thr Ser Gly Thr Gln Ala Lys Ser Ala 1145 1150 1155 Phe Val Thr Phe Asn Gly Asn Thr Tyr Tyr Phe Asp Ala Arg Gly 1160 1165 1170 His Met Val Thr Asn Ser Glu Tyr Ser Pro Asn Gly Lys Asp Val 1175 1180 1185 Tyr Arg Phe Leu Pro Asn Gly Ile Met Leu Ser Asn Ala Phe Tyr 1190 1195 1200 Ile Asp Ala Asn Gly Asn Thr Tyr Leu Tyr Asn Ser Lys Gly Gln 1205 1210 1215 Met Tyr Lys Gly Gly Tyr Thr Lys Phe Asp Val Ser Glu Thr Asp 1220 1225 1230 Lys Asp Gly Lys Glu Ser Lys Val Val Lys Phe Arg Tyr Phe Thr 1235 1240 1245 Asn Glu Gly Val Met Ala Lys Gly Val Thr Val Ile Asp Gly Phe 1250 1255 1260 Thr Gln Tyr Phe Gly Glu Asp Gly Phe Gln Ala Lys Asp Lys Leu 1265 1270 1275 Val Thr Phe Lys Gly Lys Thr Tyr Tyr Phe Asp Ala His Thr Gly 1280 1285 1290 Asn Gly Ile Lys Asp Thr Trp Arg Asn Ile Asn Gly Lys Trp Tyr 1295 1300 1305 Tyr Phe Asp Ala Asn Gly Val Ala Ala Thr Gly Ala Gln Val Ile 1310 1315 1320 Asn Gly Gln Lys Leu Tyr Phe Asn Glu Asp Gly Ser Gln Val Lys 1325 1330 1335 Gly Gly Val Val Lys Asn Ala Asp Gly Thr Tyr Ser Lys Tyr Lys 1340 1345 1350 Glu Gly Phe Gly Glu Leu Val Thr Asn Glu Phe Phe Thr Thr Asp 1355 1360 1365 Gly Asn Val Trp Tyr Tyr Ala Gly Ala Asn Gly Lys Thr Val Thr 1370 1375 1380 Gly Ala Gln Val Ile Asn Gly Gln His Leu Tyr Phe Asn Ala Asp 1385 1390 1395 Gly Ser Gln Val Lys Gly Gly Val Val Lys Asn Ala Asp Gly Thr 1400 1405 1410 Tyr Ser Lys Tyr Asn Ala Ser Thr Gly Glu Arg Leu Thr Asn Glu 1415 1420 1425 Phe Phe Thr Thr Gly Asp Asn Asn Trp Tyr Tyr Ile Gly Ala Asn 1430 1435 1440 Gly Lys Ser Val Thr Gly Glu Val Lys Ile Gly Asp Asp Thr Tyr 1445 1450 1455 Phe Phe Ala Lys Asp Gly Lys Gln Val Lys Gly Gln Thr Val Ser 1460 1465 1470 Ala Gly Asn Gly Arg Ile Ser Tyr Tyr Tyr Gly Asp Ser Gly Lys 1475 1480 1485 Arg Ala Val Ser Thr Trp Ile Glu Ile Gln Pro Gly Val Tyr Val 1490 1495 1500 Tyr Phe Asp Lys Asn Gly Leu Ala Tyr Pro Pro Arg Val Leu Asn 1505 1510 1515 41 20 PRT Artificial GbpB peptide 41 Gly Asn Tyr Trp Gly Asn Gly Gly Gln Trp Ala Ala Ser Ala Ala Ala 1 5 10 15 Ala Gly Arg Tyr 20 42 21 PRT Streptococcus sobrinus 42 Asn Asn His Val Ser Ile Val Glu Ala Trp Ser Asp Asn Asp Thr Pro 1 5 10 15 Tyr Leu His Asp Asp 20 43 20 PRT Streptococcus sobrinus 43 Val Val Ile Ala Asn Asn Val Asp Lys Phe Val Ser Trp Gly Ile Thr 1 5 10 15 Asp Phe Glu Met 20 44 20 PRT Streptococcus sobrinus 44 Val Thr Asp Ser Glu Ala Asn Ala Leu Ala His Ile Ser Ile Leu Glu 1 5 10 15 Ala Trp Ser Leu 20 45 20 PRT Streptococcus sobrinus 45 Asn Asn Asp Ala Asp Tyr Thr Asn Lys Lys Ile Ala Glu Asn Ala Asp 1 5 10 15 Phe Phe Lys Lys 20

Најкомплетната база на податоци за лековити билки поддржана од науката

  • Работи на 55 јазици
  • Лекови од билки поддржани од науката
  • Препознавање на билки по слика
  • Интерактивна GPS мапа - означете ги билките на локацијата (наскоро)
  • Прочитајте научни публикации поврзани со вашето пребарување
  • Пребарувајте лековити билки според нивните ефекти
  • Организирајте ги вашите интереси и останете во тек со истражувањето на новостите, клиничките испитувања и патентите

Напишете симптом или болест и прочитајте за билки што можат да помогнат, напишете билка и видете болести и симптоми против кои се користи.
* Сите информации се базираат на објавени научни истражувања

Google Play badgeApp Store badge