Macedonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 1991-Sep

Photoresponses of transgenic tobacco plants expressing an oat phytochrome gene.

Само регистрираните корисници можат да преведуваат статии
Пријавете се / пријавете се
Врската е зачувана во таблата со исечоци
A C McCormac
J R Cherry
H P Hershey
R D Vierstra
H Smith

Клучни зборови

Апстракт

The physiological responses of transgenic tobacco (Nicotiana tabacum L.) plants that express high levels of an introduced oat (Avena sativa L.) phytochrome (phyA) gene to various light treatments are compared with those of wild-type (WT) plants. Seeds, etiolated seedlings, and light-grown plants from a homozygous transgenic tobacco line (9A4) constructed by Keller et al. (EMBO J, 8, 1005-1012, 1989) were treated with red (R), far-red (FR), or white light (WL) with or without supplemental FR light, revealing major perturbations of the normal photobiological responses. White light stimulated germination of both WT and transgenic seed, but addition of FR to the WL treatment suppressed germination. In the WT, all fluence rates tested inhibited germination, but in the transgenics, reduction effluence rate partially relieved germination from the FR-mediated inhibition. It is suggested that the higher absolute levels of the FR-absorbing form of phytochrome (Pfr) in the irradiated transgenics, compared to the WT, may be responsible for the reduced FR-mediated inhibition of germination in the former. Hypocotyl extension of dark-grown seedlings of both WT and transgenic lines was inhibited by continuous R or FR irradiation, typical of the high-irradiance response (HIR). After 2 d of de-etiolation in WL, the WT seedlings had lost the FR-mediated inhibition of hypocotyl extension, whereas it was retained in the transgenics. The FR-mediated inhibition of hypocotyl extension in the transgenic seedlings after de-etiolation may reflect the persistence of an, FR-HIR response mediated by the overexpressed oat PhyA phytochrome. Light-grown WT seedlings exhibited typical shade-avoidance responses when treated with WL supplemented with high levels of FR radiation. Internode and petiole extension rates were markedly increased, and the chlorophyll a∶b ratio decreased, in the low-R: FR treatment. The transgenics, however, showed no increases in extension growth under low-R: FR treatments, and at low fluence rates both internode and petiole extension rates were significantly decreased by low R ∶ FR. Interpretation of these data is difficult. The depression of the chlorophyll a∶b ratio by low R ∶ FR was identical in WT and transgenic plants, indicating that not all shade-avoidance responses of light-grown plants were disrupted by the over-expression of the introduced oat phyA gene. The results are discussed in relation to the proposal that different members of the phytochrome family may have different physiological roles.

Придружете се на нашата
страница на Facebook

Најкомплетната база на податоци за лековити билки поддржана од науката

  • Работи на 55 јазици
  • Лекови од билки поддржани од науката
  • Препознавање на билки по слика
  • Интерактивна GPS мапа - означете ги билките на локацијата (наскоро)
  • Прочитајте научни публикации поврзани со вашето пребарување
  • Пребарувајте лековити билки според нивните ефекти
  • Организирајте ги вашите интереси и останете во тек со истражувањето на новостите, клиничките испитувања и патентите

Напишете симптом или болест и прочитајте за билки што можат да помогнат, напишете билка и видете болести и симптоми против кои се користи.
* Сите информации се базираат на објавени научни истражувања

Google Play badgeApp Store badge