Страница 1 од 72 резултати
Obesity is a risk factor for colorectal cancer. The accumulation of abdominal fat tissue causes abundant reactive oxygen species production through the activation of NADPH oxidase due to excessive insulin stimulation. The enzyme NADPH oxidase catalyzes the production of reactive oxygen species and
Bronchial asthma and obesity are common health problems. Obesity is already responsible for 300,000 deaths per year.The aim of the present study was to assess whether apocynin, alpha lipoic acid and probiotic administration in combination with low-fat diet We investigated the effects of apocynin on high-fat diet- (HFD-) induced insulin resistance in C57BL/6 mice. After 12 weeks of HFD, the mice that exhibited insulin resistance then received 5 weeks of apocynin (2.4 g/L, in water). Following apocynin treatment, fasting glucose, insulin, and glucose
Obesity is involved in several cardiovascular diseases including coronary artery disease and endothelial dysfunction. Endothelial Endothelium vasodilator and vasoconstrictor agonists play a key role in regulation of vascular tone. In this study, we evaluated coronary vascular response in an 8 weeks
Apocynin has been widely used in vivo as a Nox2-contaninig nicotinamide adenine dinucleotide phosphate oxidase inhibitor. However, its time-dependent tissue distribution and inhibition on organ reactive oxygen species (ROS) production remained unclear. In this study, we examined apocynin
Obstructive sleep apnea is characterized by intermittent hypoxia (IH) during sleep and predisposes to endothelial dysfunction. Obesity is a major risk factor for the occurrence of sleep apnea. The present study compared the functional impact of low (IH10; 10 hypoxic events/hour) and high (IH60; 60
The present study was undertaken to establish the role of NADPH oxidase (Nox) in impaired vascular compensation to arterial occlusion that occurs in the presence of risk factors associated with oxidative stress. Diet-induced obese (DIO) mice characterized by multiple comorbidities including diabetes
OBJECTIVE
Obese subjects exhibit decreased exercise capacity (VO2max ). We have shown that vascular KATP channel mediates arteriolar dilation to muscle contraction. We hypothesize that exercise capacity is decreased in obesity due to impaired vascular KATP function.
METHODS
The VO2max was measured
BACKGROUND
Elevated oxidative stress plays a key role in diabetes-associated vascular disease. Excessive production of reactive oxygen species via advanced glycation end products (AGEs) activates peroxisome proliferator-activated receptor gamma (PPARγ) and the transcription factor nuclear factor-kB
Obesity is characterized by a systemic low-grade chronic inflammatory oxidative condition that affects vascular and cardiac smooth muscle relaxation. In human antrum, relaxation is mediated by vasoactive intestinal peptide (VIP) through cAMP and cGMP signaling pathways. A genome-wide association
Lung capillary filtration coefficient (Kf) and impacts of oxidative stress have not been determined in the setting of severe trauma, especially in obese patients who exhibit increased lung injury. We hypothesized that severe trauma leads to a greater increase in lung Kf in obesity due to exacerbated
It is well established that oxidative stress is enhanced in diabetes. However, the major in vivo source of oxidative stress is not clear. Here we show that vascular NAD(P)H oxidase may be a major source of oxidative stress in diabetic and obese models. In vivo electron spin resonance (ESR)/spin
OBJECTIVE
Erectile dysfunction (ED) is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO) are usually implicated in the pathophysiology of the diabetic ED, but the
Ventricular arrhythmias are a common cause of sudden cardiac death, and their occurrence is higher in obese subjects. Abnormal gating of ryanodine receptors (RyR2), the calcium release channels of the sarcoplasmic reticulum, can produce ventricular arrhythmias. Since obesity promotes oxidative
Insulin resistance (IR) and associated hyperinsulinemia are major risk factors for coronary artery disease. Mechanisms linking hyperinsulinemia to coronary vascular dysfunction in IR are unclear. We evaluated insulin-induced vasodilation in isolated small coronary arteries (SCA; approximately 225