6 резултати
The most important cause of death in β-thalassemia major patients is organ dysfunction due to iron deposits. Non-transferrin bound iron (NTBI), labile plasma iron (LPI) and labile iron pool are redox-active forms of iron found in thalassemia. Iron chelation therapy is adopted to counteract the
Liver is affected by secondary iron overload in transfusions dependent b-thalassemia patients. The redox iron can generate reactive oxidants that damage biomolecules, leading to liver fibrosis and cirrhosis. Iron chelators are used to treat thalassemias to achieve negative iron balance and relieve
We have investigated the efficacy of mono- and combined therapy with green tea extract (GTE) in mobilizing redox iron, scavenging reactive oxygen species (ROS), and improving insulin production in iron-loaded pancreatic cells.Rat insulinoma pancreatic Beta-thalassemia patients suffer from secondary iron overload caused by increased iron absorption and multiple blood transfusions. Excessive iron catalyzes free-radical formation, causing oxidative tissue damage. Non-transferrin bound iron (NTBI) detected in thalassemic plasma is highly toxic and
Secondary iron overload is found in beta-thalassemia (thal) patients because of increased dietary iron absorption and multiple blood transfusions. Excessive iron catalyzes free-radical generation, leading to oxidative damage and vital organ dysfunction. Non-transferrin-bound iron (NTBI) detected in
Iron overload in patients with β-thalassemia can cause oxidative organ dysfunction. Iron chelation along with antioxidant supplementation can ameliorate such complications and prolong lives. Green tea extract (GTE) rich in epigallocatechin-3-gallate (EGCG) exhibits anti-oxidation and iron chelation