Страница 1 од 689 резултати
While numerous microRNAs (miRNAs) have been reported to alter their expression levels in human lung cancer tissues compared with normal tissues, the function of these miRNAs and their contribution to the long process of lung cancer development remains largely unknown. We applied a tobacco-specific
Tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) exhibits potent carcinogenic activity in vitro and in vivo and has been shown to contribute to multiple steps in the tumorigenesis of lung cancer. In this study, we found that NNK up-regulated the expression of contactin-1, a
The purpose of this study was to evaluate the effects of the loss of a p53 allele and phenethyl isothiocyanate (PEITC) pre-treatment on the tumorigenicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and K-ras mutation frequency in a hybrid mouse model. Male TSG-p53 'knock-out' mice were
We used isobaric tag labeling coupled with mass spectrometry to compare the relative abundance of proteins in lung tumors from A/J mice treated with a mixture of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene versus normal mouse lung tissues. Levels of 59 proteins changed-30
Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular
BACKGROUND
It was reported that tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was a powerful pulmonary carcinogen, predominantly inducing adenocarcinoma of the lung in mouse. The aim of this study is to assay metabolites of NNK, which are
Lung cancer remains the leading cause of cancer-related deaths worldwide. In order to understand lung cancer biology and evaluate novel therapeutic strategies, preclinical mouse models have been developed that mimic early and advanced-stage lung cancer. Among autochthonous models, carcinogen-induced
Epidemiological studies suggest that smoking during pregnancy and passive exposure of children to cigarette smoke may increase the cancer risk in children and young adults. We have previously shown that the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an
The purpose of this study was to establish a lung tumor model for the evaluation of chemopreventive agents against lung cancer in smokers. Lung tumor induction in A/J mice by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (BaP) was studied using protocols in which these two
OBJECTIVE
NNK [4-(methylnitrosamino)-1-(3-pyridyle)-1-butanone] is a nicotine-derived nitrosaminoketone contained in tobacco smoke used as a powerful chemical carcinogen for rodent experimental models of pulmonary carcinogenesis. To clarify its carcinogenetic mechanisms, we examined the expression
Nuclear receptor subfamily 1, group I, member 3 (NR1I3) is reported to be a possible novel therapeutic target for some cancers, including lung, brain and hematopoietic tumors. Here, we characterized expression of NR1I3 in a mouse model of lung carcinogenesis induced by
(+)-Dihydromethysticin was recently identified as a promising lung cancer chemopreventive agent, while (+)-dihydrokavain was completely ineffective. A pilot in vivo structure-activity relationship (SAR) was explored, evaluating the efficacy of its analogs in blocking
The tobacco-specific nitrosamine (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is classified by the International Agency for Research on Cancer as a Group 1 carcinogen. Cancer risk assessment in humans exposed to TSNAs largely relies on potency values estimated from animal studies, but
Aberrant or excessive expression of cyclooxygenase (COX)-2 has been implicated in the pathogenesis of many disease processes, including carcinogenesis. COX-2 expression was immunohistochemically examined in archival samples (D. Hoffmann et al., Cancer Res., 53: 2758-2761, 1993) of lung neoplasms
4-(N-Methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the tobacco-specific nitrosamine, induces lung cancer in all animal species tested and is thought to contribute significantly to the high lung cancer burden associated with smoking. However, there is no report whether NNK could promote colon