Страница 1 од 120 резултати
An extended-cavity diode laser at 852 nm has been built especially for the purpose of cooling and probing cesium atoms. It is a compact, self-aligned, and continuously tunable laser source having a 100-kHz linewidth and 60-mW output power. The electronic control of the laser frequency by the
We have measured a previously unobserved systematic frequency shift in our cesium-fountain frequency standard, NIST-F1. This shift, predicted theoretically previously, mimics the well-known end-to-end phase shift in atomic beam standards when synchronous thermal transients are present. Detuning the
We present an external-cavity laser diode characterized by an intracavity cylinder lens to compensate for the astigmatism of the laser. This setup was applied to a broad-area laser diode operating on the D(1) line of the cesium atom at 894 nm, yielding single-mode emission. A saturated-absorption
The binding properties of water-soluble cryptophane 1 toward cesium and thallium cations, in basic solution, have recently been reported. In this Article, we show that water-soluble cryptophane-222 (2), cryptophane-223 (3), and cryptophane-233 (4), bearing zero, one, and two propylenedioxy linkers,
We made Doppler-broadened and Doppler-free absorption measurement of a cesium cell that was placed inside an external Fabry-Perot ring cavity, using a Nd:YAG laser. We achieved a cavity finesse of ~85, and the sensitivity of the measurement was improved by as much as 26.5 with respect to single-pass
Cavity dumping is demonstrated in a diode-pumped alkali laser (DPAL) using a Pockels cell. We generated a 14 ns FWHM pulse with a peak power of 77 W from a 3.1 W continuous wave cesium DPAL. Due to the limitation of the high-voltage power supply, the pulse repetition rate is restricted to 100 Hz.
Cavity phase matching has been recently demonstrated as a phase-matching method for efficient nonlinear frequency conversion in a microcavity. Here we extend it to the Type I configuration using a sub-coherent-length optical parametric oscillator consisting of an MgO-doped lithium niobate crystal
Low-frequency wavelength modulation spectroscopy is acquired with an external-cavity diode laser. The wavelength modulation is achieved with voltage tuning by means of scanning with the piezoelectric stepper motor, which rotates the end mirror in the laser cavity. With optimum 1-kHz frequency
We have studied the complexes formed between the p-sulfonatocalix[4]arene and cesium or thallium metal cation, first by carbon-13 longitudinal relaxation of the calixarene molecule at two values of the magnetic field B(0). From the longitudinal relaxation times of an aromatic carbon directly bonded
This study deals with the exact location of the monovalent metal cations Cs(+) and Tl(+) which are complexed by the p-sulfonatocalix[4]arene in water. This determination rests on the measurements of longitudinal relaxation times of carbon-13 not directly bonded to protons. The difference between the
Cesium-131 (Cs-131) brachytherapy is used to reduce local recurrence of resected brain metastases. In order to ensure dose homogeneity and reduce risk of radiation necrosis, inter-seed distance and cavity volume must remain stable during delivery.
To investigate the efficacy of the
How can radioactive Cs+ ions be removed from aqueous solution? From this perspective, the adsorption of Cs+ was investigated by using five types of clay minerals possessing different charge exchange capacities. The fixation ability for Cs+ depended on the charge exchange capacity of the clay
Adjuvant radiation therapy (RT), such as cesium-131 (Cs-131) brachytherapy or stereotactic radiosurgery (SRS), reduces local recurrence (LR) of brain metastases (BM). However, SRS is less efficacious for large cavities, and the delay between surgery and SRS may permit tumor We demonstrate a stable, picosecond fiber laser mode-locked by cesium lead halide perovskite quantum dots (CsPbBr3-QDs). The saturable absorber is produced by depositing the CsPbBr3-QDs nanocrystals onto the endface of a fiber ferrule through light pressure. A balanced two-detector measurement shows