Страница 1 од 26 резултати
OBJECTIVE
The antibacterial property of coconut, the presence of lauric acid, and the ability to extract antimicrobial peptides Cn-AMP (1, 2, and 3) from tender coconut water has drawn attention on its effectiveness in normal consumption. An in-vitro experimental study was conducted to evaluate the
The increasing numbers of cases of antibiotic resistance among pathogenic bacteria such as Vibrio species poses a major problem to the food and aquaculture industries, as most antibiotics are no longer effective in controlling pathogenic bacteria affecting these industries. Therefore, this study was
Antibacterial properties of aqueous and methanolic extracts of 26 medicinal plants used in Mexico to treat gastrointestinal disorders were tested against eight different species of enteropathogens: two Escherichia coli species; two Shigella sonnei species; two Shigella flexneri species; and two
Green synthesis of silver nanoparticles (AgNPs) is environmentally satisfactory because of their low cost and safe to nature. In the present study, extract of an agricultural waste, coconut (Cocos nucifera) shell is used to synthesize AgNPs and their antibacterial effect was investigated against
This study was aimed to examine the antibacterial and antioxidative properties of seven edible plants from Thailand to develop alternative antibiotics as feed additives. The plants include Citrus aurantifolia Swingle (Lime) fruits and its leaves, Sesbania grandiflora L. (Agati sesbania) leaves,
The present study reports the simple, inexpensive, eco-friendly synthesis of silver nanoparticles (AgNPs) using coconut oil cake extract. Scanning electron microscopy-energy dispersive spectroscopy peak at 3 keV confirmed the presence of silver. Transmission electron micrograph showed that
At present, approximately 25%of drugs in modern pharmacopoeia are derived from plant sources (phytomedicines) that can be developed for the treatment of diseases and disorders. Many other drugs are synthetic analogues built on the prototype compounds isolated from plants. Cocos nucifera Linn.
Green synthesis of nanoparticles using plant source has been given much importance. In the present study, silver nanoparticles (AgNPs) were synthesized using the ethyl acetate and methanol (EA: M 40:60) extracts of the inflorescence of the tree Cocous nucifera. The synthesized nanoparticles were
UNASSIGNED
The aim of the present study is to evaluate and compare the antimicrobial susceptibility and cytotoxicity of Cocos nucifera and chlorhexidine (CHX) as irrigating solutions against Enterococcus faecalis, Prevotella intermedia, and Porphyromonas gingivalis.
UNASSIGNED
The ethanolic extract
Cocos nucifera (L.) (Arecaceae) is commonly called the "coconut tree" and is the most naturally widespread fruit plant on Earth. Throughout history, humans have used medicinal plants therapeutically, and minerals, plants, and animals have traditionally been the main sources of drugs. The
Catechins are polyphenols with antioxidant activity. The fruit Cocos nucifera (Palmae) has a fi ber husk rich in catechins and the local population of northeast Brazil uses it as a medicine against various diseases. An anti-bacterial and anti-viral activity has been already observed using this
BACKGROUND
Teas from the husk fiber of Cocos nucifera are used in the folk medicine to treat arthritis and other inflammatory processes. Some works show that some varieties have biological activities. However, one of the main variety of the species, C. nucifera var. typica, known in Brazil as
Coconut, Cocos nucifera L., is a tree that is cultivated for its multiple utilities, mainly for its nutritional and medicinal values. The various products of coconut include tender coconut water, copra, coconut oil, raw kernel, coconut cake, coconut toddy, coconut shell and wood based products,
The available therapy for leishmaniasis, which affects 2 million people per annum, still causes serious side effects. The polyphenolic-rich extract from the husk fiber of Cocos nucifera Linn. (Palmae) presents antibacterial and antiviral activities, also inhibiting lymphocyte proliferation, as shown
In this study, antibiofilm activity of coconut husk extract (CHE) was tested by various assays in the laboratory. The effects of CHE on extracellular polymeric substance (EPS) production, hydrophobicity and adhesion ability of Pseudomonas sp., Alteromonas sp. and Gallionella sp. and the