Страница 1 од 77 резултати
Novel genes that function in the conversion of indole-3-acetamide (IAM) into indole-3-acetic acid (IAA), which were previously thought to exist only in the bacterial genome, have been isolated from plants. The finding of the AtAMI1 gene in Arabidopsis thaliana and the NtAMI1 gene in Nicotiana
Motif analysis among 30 EH1 and EH2 epoxide hydrolases from Solanaceaeous plants showed differences primarily in the lid region around the catalytic site. Based on in silico models of 3D structures, EH1 proteins lack a catalytic triad because of the orientation of one of the conserved lid tyrosines,
Plant epoxide hydrolases (EH) form two major clades, named EH1 and EH2. To gain a better understanding of the biochemical roles of the two classes, NbEH1.1 and NbEH2.1 were isolated from Nicotiana benthamiana and StEH from potato and heterologously expressed in Escherichia coli. The purified
The activities of hydrolases (acid phosphatase, RNase, and proteases) in healthy and tobacco mosaic virus-infected leaves of Nicotiana tabacum L. var. Samsun, both untreated and treated with polysaccharides (PS) (1,3;1,6-β-D-glucan, fucoidan, and κ/β-carrageenan), were determined. The PS lead to
Three SAH hydrolase inhibitors, (RS)-3-adenin-9-yl-2-hydroxypropanoic acid (isobutyl ester) [(RS)-AHPA]; (RS)-9-(2,3-dihydroxypropyl)adenine [(RS)-DHPA] and the carbocyclic analog of 3-deazaadenosine (C-c3Ado) were evaluated for their inhibitory activity against tobacco mosaic virus (TMV) and potato
Nodule formation induced by nitrogen-fixing rhizobia depends on bacterial nodulation factors (NFs), modified chitin oligosaccharides with a fatty acid moiety. Certain NFs can be cleaved and inactivated by plant chitinases. However, the most abundant NF of Sinorhizobium meliloti, an O-acetylated and
Epoxide hydrolases (EHs) are present in all living organisms. They have been extensively characterized in mammals; however, their biological functions in plants have not been demonstrated. Based on in silico analysis, we identified AtEH1 (At3g05600), a putative Arabidopsis thaliana epoxide hydrolase
The oxidative deamination of methylated putrescine by a diamine oxidase activity (DAO) is an important step in the biosynthesis of nicotine in tobacco and tropane alkaloids in several Solanaceous plants. A polyclonal rabbit antiserum was previously developed to a purported purified DAO enzyme from
A putative family 3 glycosyl hydrolase (GH) gene showed significant differential expression in resistant Sinapis alba, compared with the susceptible Brassica juncea, as part of the initial responses during interaction with the necrotroph Alternaria brassicicola. To understand the mechanism of
Four cDNA clones (SlArf/Xyl1-4) encoding α-l-arabinofuranosidase/β-xylosidase belonging to glycoside hydrolase family 3 were obtained from tomato (Solanum lycopersicum) fruit. SlArf/Xyl1 was expressed in various organs. Its level was particularly high in flower and leaves but low in fruit.
Epoxide hydrolase hydrates epoxides to vicinal diols in the phyto-oxylipin peroxygenase pathway resulting in the production of epoxy alcohols, dihydrodiols, triols and epoxides, including many lipid epoxides associated with resistance. Two epoxide hydrolase genes from Nicotiana benthamiana L.,
Activity-based protein profiling (ABPP) is a targeted functional proteomics method that displays the active proteome by using small molecule probes that react covalently with the active sites of protein classes. Comparison of activity profiles from two different samples is not always easy,
An alpha/ beta hydrolase annotated as a putative salicylate esterase within the genome of a species of Paenibacillus previously identified from differential and selective growth on Kraft lignin was structurally and functionally characterised. Feruloyl esterases are key to the degradation of lignin
Cocaine addiction affects millions of people with disastrous personal and social consequences. Cocaine is one of the most reinforcing of all drugs of abuse, and even those who undergo rehabilitation and experience long periods of abstinence have more than 80% chance of relapse. Yet there is no
A recently reported cocaine hydrolase (CocH3) fused with fragment crystallizable (Fc) region of human immunoglobulin G1, denoted as CocH3-Fc, is known as a promising therapeutic candidate for the treatment of cocaine overdose and addiction. A challenge for practical therapeutic use of this enzyme